
Programming

With

wxDev-C++

By Sof.T

Covering using wxDev-C++ for

Programming and Debugging

Basic C and C++ Programming

Using wxWidgets with wxDev-

C++

Answers Frequently Asked

Questions

Source Code Available Online

Copyright (C) 2006 Sof.T

 This book and associated source code is free published material; you can redistribute it
and/or modify it under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your option) any later
version.

 This book and associated source code is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

 See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
book; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA

02139, USA.

Programming With wxDev-C++

“It’s got some quirks but then again don’t we all”
NinjaNL

Contents

The Boring Bit

• Introduction
• History of wxDev-C++
• Who This Book Is For
• Acknowledgements

Part 1 – C / C++ Programming with wxDev-C++
• Chapter 1 – Downloading, Installing and Updating wxDev-C++

o Introduction
o Downloading wxDev-C++
o Installing wxDev-C++
o Updating wxDev-C++
o Adding Extra Packages

• Chapter 2 – Compiling your first program
o Introduction
o Opening an existing project
o Creating your own project

• Chapter 3 – Basic C Programming
o Introduction
o Break down of a simple example
o Basic C
o Conditional Loops
o Conditional Execution
o Preprocessor
o Functions
o Input/Output and other useful functions
o Pointers
o Memory allocation
o Arrays
o Strings
o Structures

• Chapter 4 – Basic C++ Programming
o Introduction
o Break down of a simple example
o Basic C++
o Functions
o Memory allocation

o Classes
o Input/Output
o Strings
o Namespaces
o Exceptions
o Templates

• Chapter 5 – Finding your way around the IDE
• Chapter 6 – Debugging with wxDev-C++
• DevC++ Related FAQs

o What is this I hear about an Easter egg in Dev-C++?
o Why is my program not recompiled when one of the header files is

altered?
Part 2 – Basic Development with wxWidgets and wxDev-C++

• Chapter 7 – Creating a Basic HTML Editor
o Introduction
o Starting a wxWidgets Project
o Using the Form Designer
o Altering Properties
o Adding Code

• Chapter 8 – Working With Forms and Dialogs
• Chapter 9 – The Component Palette

o Sizers
o Controls

� Text Controls
� Buttons
� Choices
� The Rest

o Window
o Toolbar
o Menu
o Dialogs
o System

• Chapter 10 – Linking It With Events
• Chapter 11 – Making It Work With Code

o Where to add your code (or where did it go)
• Chapter 12 – Guidelines for Professional Looking Programs

o Mnemonics or Keyboard Accelerators
• Basic wxDev-C++ Related FAQs

o Why does my program look different when I compile it?
o Why does my program not look like a Windows XP program when I

compile it?
o wxDev-C++ keeps crashing what’s wrong, what can I do?
o I started wxDev-C++ then selected File|New|New wxFrame but when I

pressed compile nothing happens.
o I try to compile my project but get lots of errors.

o I disabled code completion, but the visual designer keeps complaining,
why does the designer need code completion enabled?

o I have installed a new version of wxDev-C++ or a new version of the
wxWidgets library. Now when I try to compile a previously working
project I get this error “cannot find –lwxmsw25”. What is wrong?

o I try to compile my wxWidgets project but I keep getting the error
“[Resource error] can’t open cursor file ‘wx/msw/hand.cur’: No such file
or directory. What am I doing wrong?

o Where can I go for more help?
Part 3 – Advanced Development with wxWidgets and wxDevC++

• Chapter 13 - Creating and using other controls
o The Simple Way
o The Complex Way

• Chapter 14 – Working with other frameworks
o OpenGL
o SDL

Part 4 – Going Beyond the Boundaries of this Book
• Alternatives
• Resources

Appendix
A. Keyboard Shortcuts
B. C/C++ Keywords
C. C Standard Libraries
D. C++ Standard Libraries

This Page Intentionally Left Blank
(Just to irritate you when you print it out)

The Boring Bit

Introduction

The first question any child will ask you is why and it is a good question (except after the
thirtieth time of being asked). The sun is blazing down; it’s a 1000 outside, so why am I
indoors writing this book?

The main reason is because many people have asked on wxForum if a book on wxDev-
C++ is going to be written. So far a few tutorials have been produced and there have been
various mutterings about books. That answers the question as to why I am writing this
book. But not why I am writing this book.

For me wxDev-C++ is something very special. It all goes back to July 1999 (queue the
flashback and misty camera lenses). As per usual I brought a computer magazine, just
one in a huge pile of magazines, but this one was special. On the cover disc was
Championship Manager 3, but being a geek I was not interested in this. Rather I was
taken by the small box in the corner saying ‘Bloodshed DevC++, Free C and C++
environment’. A whole new world was opened to me, the world of C and C++ up to then
I had only programmed in Basic and Visual Basic. I was also introduced to the amazing
world of Open Source Software.

Figure 0.1 – Dev-C++ circa 1999

I rushed home from work and installed this program, it was very basic and rather ugly,
but I didn’t notice. I opened one of the samples, pressed compile and got greeted by a
message that this program could not be compiled, then the IDE (Integrated Development
Environment) crashed. Undeterred I reloaded DevC++ and another sample and this time
it compiled. It was just a basic window with a button in it, but to me it was a miracle. I
thought Colin Laplace godlike to produce this program for free and give it away. In the
years that followed I continued to use DevC++ and watched it grow from an ugly,
unstable program, to an IDE reminiscent of Microsoft Visual Studio which fulfilled most
of my programming needs. I am not alone, today DevC++ is still the most download
development application on SourceForge.

Figure 0.2 – DevC++ in a more recent guise

However I also used another IDE this time from Borland called C++ Builder. I loved the
ease of use in creating GUIs in seconds. I could see what they would look like before I
compiled and I could alter things in seconds that would take lines of code to create and
change. I was torn between DevC++ and C++ Builder until I joined a project called
‘SkinDoc’ on SourceForge in 2005. This project was headed by a programmer known as
Nuklear Zelph and was being developed using an application which had slipped past me
called wxDev-C++. Basically it was a visual designer built on top of DevC++. I
downloaded it and found the answer to all my programming desires.

Well not quite, wxDev-C++ is a great piece of work; many skilled programmers have
spent and continue to spend a lot of time in creating and improving it. But it is also a
work in progress, as a result it has a few rough edges. It is also similar to and yet
sufficiently different to other IDEs that some parts of it maybe tricky for newcomers to
use. I floundered around until I discovered the tutorials available on the wxDev-C++
home site and later discovered wxForum. wxDev-C++ also suffers from a major
drawback. The original DevC++ was a paradox in that it was a C/C++ IDE written in
Delphi Pascal. wxDev-C++ continues this tradition and as such programs developed with
the form designer don’t always match the compiled program. It is an example of a

WYSINAWYG (What You See Is Not Always What You Get) application, some of this
will improve with time, but I doubt it will ever be a perfect match.

This book then is written with the experience I have gained, the experience of other users
on the forums and in the hope that it will be useful. Some of it will no doubt be out of
date quite soon as wxDev-C++ continues to improve, but this book will reflect these
changes as it grows alongside the IDE.

Sof.T

History of wxDev-C++

In 1983 Richard Stallman announced the GNU project. This project aimed to provide a
‘free’ unix operating system with comparable tools. The well known GCC compiler was
created by Richard Stallman as part of this project.

In 1992 Julian Smart began a project called wxWindows, which in 2004 changed its
name to wxWidgets due to pressure from Microsoft. This project was designed to
produce an Open Source cross platform GUI library, which used each platform’s native
widgets.

In 1995 Steve Chamberlain began the Cygwin project after noting that GCC contained a
large number of features which made it practical to port to Windows. Other programmers
joined the project and helped expand the Cygwin package.

Originally a fork from Cygwin came MinGW (Minimalist GNU for Windows). This
provided the tools and Windows headers for development on the Win32 platform.

Around 1999 Colin Laplace released the first version of Dev-C++. Using the MinGW
compiler, it provided a minimal IDE. As other developers joined in, they helped expand
Dev-C++ into an IDE which now resembles Microsoft’s Visual Studio.

2003 Guru Kathiresan created a stand alone visual form designer in Delphi. Although it
had limited functionality it was able to create basic applications.

In 2004 Guru Kathiresan incorporated the visual form designer into Dev-C++. The
resulting application was renamed wxDev-C++ and became a RAD tool similar to Delphi
or Visual Basic. Many other developers have joined in and this tool continues to improve.

Who This Book Is For

In order for this book to work it will need to address a wide range of audiences. From
those who have never programmed in C++ to those who are competent, but have never

used wxWidgets, and those who are comfortable with both, but looking for an extra
nugget of information.

This diverse range of prospective readers has influenced the shape of this book, experts
will not want to wade through a basic primer on C/C++ programming, and beginners will
not want to create GUIs that do nothing because they can not create the code to back it all
up. As a result the book is divided up to allow users to skip directly to the section they are
interested in.

Section one

This section deals with installing wxDev-C++, coding in C and C++, and the DevC++
part of wxDev-C++.

Section two

This section deals with GUI creation using wxDev-C++. It goes into wxWidgets and how
the two work together.

Section three

The final section covers advanced topics, for users who want to do more than create using
the standard controls.

Each section ends with a selection of FAQs related to that section.

Acknowledgements

Thanks to Peter James for volunteering to carry out the role of proof-reader. His edits and
additions are greatly appreciated and have helped to considerably raise the quality of this
book. Malcolm Nealon has also added some valuable improvements, as well as correcting
at least one major mistake.

Thanks also to the developers of wxDev-C++, especially Joel Low and Tony Reina for
the time they have taken to respond to my questions.

Part 1

C / C++ Programming with

wxDev-C++

Chapter 1 – Downloading, Installing and Updating wx Dev-C++

Introduction

This chapter is aimed at all users. I have deliberately pitched the level of explanation to
users who rarely or never install and uninstall programs. Advanced users may be irritated
by the number of screenshots and the overly precise instructions. If this is you then just
skip past this section or perhaps lightly skim it for information that is new to you.

A question that many have asked is if wxDev-C++ is available on platforms other than
Windows. The short answer is no. However the good news is that any code you produce
with wxDev-C++ can be compiled on other platforms. For more information check the
FAQ at the end of Part 1 or visit http://wxdsgn.sourceforge.net/faq.php .

Downloading wxDev-C++

The wxDev-C++ project is hosted on SourceForge and this is the place to go to download
the latest official version (There are other versions, but we will cover those later). So for
now make sure you are connected to the Internet and open your web browser. To go to
the official wxDev-C++ website enter the URL http://wxdsgn.sourceforge.net.

Figure 1.1 – The Official wxDev-C++ website [Accessed 1/11/2006 at 7:55A.M.]

On the navigation bar on the left you will see the link to Downloads. At present there are
two different links one to wxDev-C++ and the other to wxDev-C++ for VC. The first
version uses the open source compiler Mingw only but the other version can also use
Microsoft’s Compiler. Soon both these versions will be merged.

Click on the wxDev-C++ 6.10 option.

Figure 1.2 – Selecting a version of wxDev-C++

Clicking on the link labelled ‘wxDev-C++ 6.10’ will take you to the SourceForge
download page. This page contains a list of mirror sites from which you can download
the setup file.

Figure 1.3 – SourceForge download page for wxDev-C++

Now choose a mirror site that is closest to your home location. For me this is Kent, U.K.
To the right of the mirror site name, is a link in blue labelled “Download”.

Click on this link to access the download page from the mirror site.

The page will reload using that mirror and the download will start immediately.

NOTE: In Internet Explorer Windows XP Service pack 2, the download may be

blocked. In which case it is necessary to click on the header and select
‘Allow download from this site’.

The next thing you should see is the download dialog box. This will differ from one web
browser to the next, but all should contain the same basic options to either download the
file or run it. If you choose the [Run] option, the setup file will download and run
automatically once downloading is complete. If you choose [Save] the setup file will be
saved onto your computer for you to run when you wish.

 Click on either of the [Run] or [Save] buttons.

Figure 1.4 – Internet Explorer’s file download option box

Figure 1.5 – Firefox’s file download option box

In my case I chose [Save] since I prefer to keep the setup files on hand should I need to
uninstall/reinstall or install on a different computer. So click on either the [Run] or [Save]
to continue.

Figure 1.6 – Choosing a location to save the setup files in.

Once you have chosen to [Run] or [Save] the file, the download should begin. Depending
on your Internet connection this is either time for a quick cup of tea or a quick stretch.
(As the following dialog shows this download was approximately 47.5Mb in November
2006)

Figure 1.7 – The setup file downloading

Installing wxDev-C++

Once the file has downloaded, if you chose to run the file the installation program will
start automatically, if not you need to browse to where you saved the file and:

 Either double left click on the file name to run it.
 Or right click and choose ‘Open’.

Figure 1.8 – Running the setup program

The next thing you should see is a warning box telling you not to install this program
over an existing installation. This is an important warning as many people have found.
Failure to heed these instructions can result in a broken installation which looks okay but
gives you endless headaches (not unlike cheap cider). See the section Updating wxDev-
C++ later in this chapter for further details.

Figure 1.9 – The initial warning message from wxDev-C++ setup

The next dialog displays the language selections used during the install. Personally I stick
with the default English since I have trouble understanding anything else.

Select your language and then click [OK].

Figure 1.10 – Choose a language option dialog

The next option marks a change from previous versions of wxDev-C++. Since this
release offers support for more than one type of compiler, it offers you the choice of
which compilers you wish to use.

Check the boxes next to the compiler you wish to use. Then click [Next>]

Figure 1.11 – Choosing which compilers you wish to use

Although wxDev-C++ is free, to use it you must agree to the provisions of the license
agreement. The license used is the GNU GPL (General Public Licence) Version 2. It is up
to you to either read through all of it, or skip it.

Click on [I Agree] to continue any further.

Figure 1.12 – The license agreement dialog

The next dialog offers you the chance to choose which components you wish to install.
Personally I keep to the defaults, but it is worth scrolling through the list of components
to get some idea of what is included in the distribution. The top combo box labelled
‘Select the type of install’ gives you an option of full, minimal and custom install. Use
the minimal install if space is at a premium on your computer.

You will notice that the first two choices are grey this is because they are required to
actually install something of use. If you use another IDE (not that you would) and you are
only trying wxDev-C++ then you may wish to uncheck the option to associate files with
wxDev-C++. Likewise if you didn’t make the change on last screen this is your last
chance to choose which compilers you will support and load the libraries for those.

Make your choices and then click on [Next >] to continue.

Figure 1.13 – The component choice dialog

The Start Menu option dialog gives you the option to choose where wxDev-C++ appears
on your start menu Again this is a personal choice I like to group similar types of
program together so I change this option to ‘Programming\wxDevCpp’.

Make your choice and then click [Next >] to continue.

Figure 1.14 – Start menu location option dialog

The Install Location dialog provides the option of setting the wxDev-C++ installation
location. This is one default I usually stick with. Previously this used to be ‘C:\Dev-Cpp
due to the fact that DevCpp could not handle spaces in the file path when compiling
programs. However due to the hard work by wxDev-C++’s developers this is no longer
the case. Hence the default is now ‘C:\Program Files\Dev-Cpp’. Just one of the many
improvements in this release.

Breathe in once and click on [Install].

Figure 1.15 – Choose an install location dialog

While the next dialog fills with the names of all the files being installed you will have
time for another brief break.

Figure 1.16 – File Installation dialog

Halfway through the file installation, the following dialog will pop up. If you want an
entry for wxDev-C++ on the start menu for all users on your computer then select [Yes],
otherwise select [No]. I select [No] since the other users of my computer don’t want me
messing up their environment for them.

Click on either [Yes] or [No] to continue.

Figure 1.17 – Install for all users dialog

More files will scroll past. Soon wxDev-C++ will finish installing all the files it needs.

Now click [Next] to continue.

Figure 1.18 – File Installation dialog upon completion

This will lead you to the Completing Setup dialog. Untick the check box labelled ‘Run
wx-Dev-C++’ if you don’t want wxDev-C++ to run when you exit the wizard. Equally
untick ‘Read Sof.T’s wxDev-C++ Programming Manual’ if you don’t want to read this
book.

Preferably leave ‘Run wx-Dev-C++’ checked and continue following these instructions.
If you don't, the next time you run wxDev-C++ you will need to complete the next steps.

Click [Close] to exit and cheer loudly.

Figure 1.19 – The completion of the setup dialog

When wxDev-C++ is started up for the first time you will currently be greeted with the
beta warning dialog. This will be absent on later full release versions. Read it or not as
you wish.

Click [OK] to continue.

It is worth remembering that bugs can be posted as you find them. This feature enables
Open Source software to continue improving and gives you something better to do than
just cursing the programmers when the application crashes. The other point to note is that
of updates, which is covered in detail later in this chapter, in the section ‘Updating
wxDev-C++’.

Figure 1.20 – The beta dialog

You are now presented with various options to customize your version of wxDev-C++.
This is the same introduction as the standard version of DevC++. Here you can choose
your preferred language. As mentioned earlier I stick with English. You can choose
between 3 different icon themes, (I prefer New Look) and choose whether or not to
support XP Themes.

Make your customisation choices and click [Next] to continue.

Figure 1.21 – Configuration Dialog

Next you have the option to enable code completion. Choose ‘Yes, I want to use this
feature’. The visual designer in wxDev-C++ relies on the code completion feature to
automatically create events for you. While code completion can be annoying when it
seems to get in the way, it is also a great source of information, and helps avoid typo
errors.

Click on [Next] to continue.

Figure 1.21 – Enable code completion dialog

The second part of the code completion feature asks if you want to create a cache.
Basically this scans through all the .h header files in your include directory and builds a
list of functions, etc. Later when you are programming code completion uses this cache to
prompt you or to complete the code.

Select the option ‘Yes, create the cache now’.

Click [Next] to continue.

At this point, unless you have a very fast computer, go and put the kettle on and brew a
coffee.

Figure 1.22 – Code completion cache creation dialog (try saying that fast)

Drink your coffee and continue waiting. It does end eventually I promise.

Figure 1.23 – Yep still waiting, nearly finished that coffee though

Hooray we have made it to the final dialog. Read or not as you wish and:

Click [OK] to complete the installation process.

Figure 1.24 – Phew the final dialog

After a short pause the IDE will appear, followed by the tip of the day window.

Updating wxDev-C++

Updating wxDev-C++ is a fairly simple procedure as long as you remember that dialog
box that appeared during the install saying ‘Please do not install this version of wxDev-
C++ over an existing installation’. For old hands at windows this will be a simple
procedure, but just in case you are not sure, here is how to proceed.

 As always click on the [Start] button on the toolbar.
 From the pop-up menu select the ‘Settings’ menu
 Click on ‘Control Panel’
 (or on WindowsXP click direct on the option ‘Control Panel’).

Figure 1.25 – Getting to the Control Panel (Windows 9x)

The Control Panel will pop up with various options.

You need to select Add/Remove Programs.

Figure 1.26 – Selecting Add/Remove Programs

The Add/Remove dialog will appear. Depending on how many programmes you have
installed on your computer, it may take a few seconds to fill the dialog. When it appears
scroll down the list until you get to wx-devcpp. Select this option; once it is highlighted
the Add/Remove button will become activated.

Click the [Add/Remove] button to continue.

Figure 1.27 – The Add/Remove Dialog

The next dialog shows the location of wxDev-C++ and you need to click ‘Uninstall’ to
continue.

Click the [Uninstall] button to continue.

Figure 1.28 – Uninstall dialog

A list of files is displayed as they are uninstalled.

Figure 1.29 – wxDev-C++ being uninstalled.

Finally the following dialog will pop up. If you have spent a lot of time configuring the
IDE to your own preferences, you may which to keep the configuration files.

 Click the [No] button to keep your configuration files
 or
 Click the [Yes] button to delete your configuration files and revert to the default.

Figure 1.30 – Remove configuration files dialog

At last, the final dialog. Since I personally keep my projects in C:\DEV-CPP, I leave this
directory alone. It is safe to leave this directory to install your new version into. Or delete
it. As ever, the decision is yours to make.

Figure 1.31 – The final dialog

To install the latest release from the site on Sourceforge follow the instructions in the
prior section ‘Getting wxDev-C++’.

Advanced Users

For advanced users there is the option to try the latest cutting edge versions of wxDev-
C++ alpha builds. These builds show features that may make it into future versions of
wxDev-C++. There are two sites to try these from, Tony Reina’s site and Joel Low’s site.
Both are accessible from the wxDev-C++ home page under ‘Alpha builds’ on the side
navigation bar.

Figure 1.32 – Link to alpha build of the wxDev-C++ IDE

Below is the title page for Tony’s site. Tony generally has various versions of wxDev-
C++ available.

Figure 1.33 – Tony’s wxDev-C++ page

Click on the link to wx-devcpp Testers (alpha versions). And it will take you to the
following page. You will want to grab the devcpp.palette as this adds the latest controls to
the widget palette in the IDE. The dates alongside the files give some indication as to
which are the latest. Click on the one you are interested in. Save it the location where you
installed wxDev-C++ (This is ‘C:\Program Files\Dev-Cpp’ if you accepted the default
location).

Figure 1.34 – Tony’s list of wxDev-C++ versions

When it has finished downloading browse to C:\Dev-Cpp and rename the file devcpp.exe
to something else like devcpp.exe.backup. This makes it available to change back if the
new version is too unstable. Now find the file you downloaded and rename this to
devcpp.exe. You can now start wxDev-C++ as normal.

Joel’s page on the other hand has links to alpha versions in binary only or installer
packages. He also lists links to various prebuilt wxWidgets libraries. These are also
available via web update. See the next section for more details.

Figure 1.35 – Joels’s list of wxDev-C++ versions and packages.

The latest CVS version should be located at
http://home.wanadoo.nl/m.nealon/devcppcvs.exe . Which gives you another option to try.

Adding Extra Packages

Somewhere during the development of DevC++ someone decided that it would be good
if users could add to the libraries they used and update the IDE. The first version of this
updating mechanism was called VUpdate. However this was eventually scrapped and
DevC++ moved onto a new system called Web Update. This allows the user to download
newer versions of DevC++ as they are released and to download DevPaks. DevPaks are
file packages which contain many different things from help files to extra libraries. Since
wxDev-C++ is based on DevC++ it uses the same Web Update feature, but as a result
there are some pitfalls to watch out for as we will discuss later.

Firstly let us look at how to add extra libraries to our new installation of wxDev-C++.

 If wxDev-C++ is not already running, start it up.
 From the ‘Tools’ Menu select ‘Check for Updates/Packages…’

Figure 1.36 – Check for updates from the tool menu

This will activate the Web Update application. Make sure you are connected to the
Internet before proceeding any further. At the top of the dialog is a drop down listbox
labeled ‘Select DevPak server’.

 Click on the arrow to reveal a list of servers (Currently only there are three, only
one is dedicated to wxDev-C++).

 Select 'Dev-C++ primary devpak server'.

Figure 1.37 – Selecting a DevPak server

Once you have selected the server:

 Click the [Check for updates] button at the bottom of the dialog.

After a short pause the main part of the dialog should be filled with a list of updates you
can download.

From left to right the list tells you the name of the update, the version number of the
update, and, if you already have this file installed, the version number of the installed file.
This saves you from downloading and installing out of date versions. Next follows the

size of the file which can be handy on limited bandwidth connections. Finally the file
creation date gives you some reference point on whether the file is up to date or not.

 Click on the check box next to the file name to select files for downloading.
 To activate the download, click on the [Download Selected] button.

 Note the warning below....At this point all files with a green check next to them
will be downloaded.

Figure 1.38 – Selecting libraries to download.

WARNING: Remember this system is used to update DevC++ as well as wxDev-C++.

The following image shows a new version of DevC++ that can be
downloaded. Do not download this or you will lose the visual designer part
of DevC++.

 Problems can also arise when downloading versions of wxDev-C++ that

are marked Alpha. Alpha versions may be less stable than your current
version or remove some features.

 Equally do not download libraries called wxWindows, this is the old name

for wxWidgets and will cause you a headache. Finally be wary when

downloading versions of wxWidgets libraries, if they are compiled with
different or bad options they can break a healthy installation. It is safest to
download from the wxDev-C++ server.

Figure 1.39 – Careful not to download updates of DevC++

When your files have finished downloading either they will be installed quietly as in the
case of WebUpdate Mirrors, or the following dialog will popup.

Figure 1.40 – Installing updates dialog

Clicking ‘OK’ starts up the installation part of another application called PackMan. No
this is not a small yellow ball with a big appetite, it is the Devpak manager. Here you can
choose either [Install >] or [Cancel]. Most frequently you will want to install.

Figure 1.41 – Installing the new package.

You have now installed your new package. You will find that it may have added new
templates to your New Project dialog, new help files to your system or even new libraries
to play (or work) with.

Package Maintenance
But what if you wish to remove a package you downloaded? Or to check what packages
you have available. This is all possible from within PackMan.
To do this

 Select ‘Package manager’ from the ‘Tools’ menu.

Figure 1.42 – Checking your packages

Once PackMan starts it lists all of the available packages. As you click on each one, the
panel on the left alters to tell you the package name, the version number, a brief
description and a reference website. If you click on the tab next to ‘General’ on the left
called ‘Files’ it will list all the files contained in this package.

Figure 1.43 – Controlling your packages

It is also possible to install and remove packages from here.

The above procedure is not the only way to get and install new devpaks. It is possible to
download devpaks from various websites. To get some idea of the variety available, type
‘devpak’ into google and run a search. One of the sites returned will be Devpaks.org. You
may remember seeing this name on the drop down list on Web Update. Devpaks.org is
one of the largest sites for locating devpaks.

Figure 1.44 – The home page for Devpaks.org

The packages are listed under various categories. It is quite possible to download devpaks
from here. Once downloaded you can run the files or browse to them and double click
them. If wxDev-C++ has been properly installed this will automatically start the
installation wizard you saw earlier.

Other smaller sites exist for wxDev-C++ related devpaks. Such as the one mentioned on
the forum shown below. This site can be located here http://mirror.cdhk.de/wx/

Figure 1.45 – Announcement of a new wxDev-C++ devpak site

Other devpaks are available such as these from NinjaNL

http://home.wanadoo.nl/m.nealon/wxWidgets-2.6.2.DevPak
http://home.wanadoo.nl/m.nealon/wxWidgets-2.6.2contrib.DevPak
http://home.wanadoo.nl/m.nealon/wxWidgets-2.6.2contrib.DevPak

Advanced Users

Advanced users may be interested to know where the devpaks are stored that are installed
by PackMan. The answer is in your wxDev-C++ installation directory in the folder called
packages. Why is this of interest?

I run three different installations of wxDev-C++, one on my home computer, one on my
laptop and one on a virtual vmware install of Windows which I use to test on. Instead of
repeatedly downloading and installing the packages, I install a package once on my main
computer and then install on the other machines by copying the .devpak files across and
then using the [Install] option in Packman.

Figure 1.46 – Local versions of the installed DevPaks.

Chapter 2 – Compiling your first program

Introduction

So you have your new IDE installed and upgraded as you wish. So what to do with it?
This chapter will deal with how to open existing projects and how to create and save your
own projects.

Instead of drowning you in screenshots this chapter will start using certain conventions
listed below.

Menus

When you see in the text a line like

File|New|Project

it means go to the File menu on the menubar at the top of the IDE. Select ‘File’ by
clicking on it, move down to the option ‘New’ and select ‘Project’ from the pop out
menu. This is shown below.

Figure 2.1 – Demonstration of File|New|Project

Keyboard Shortcuts

When you see instructions like press <Ctrl><F9>, this means to hold down the key
labeled ‘Ctrl’ on your keyboard and while holding it press the key labeled <F9>. There
are three types of combination keys ‘Ctrl’, ‘Shift’ and ‘Alt’. Both ‘Ctrl’ and ‘Alt’ can be
found on the bottom of the keyboard. ‘Shift’ can be found on the left and right-hand sides
of the keyboard. Keys beginning with ‘F’ can be found on the top row of the keyboard
and are known as Function keys. For more information regarding keyboard shortcuts in
wxDev-C++ see Appendix 1.

Onscreen Buttons

When you see instructions like press [Close], this means to locate the button onscreen
with the text ‘Close’ on it and click this with your mouse. This is demonstrated in the
following screenshot.

Opening an existing project

DevC++, and therefore wxDev-C++, comes with a number of example projects to
compile and play with to aid your learning. We will start by opening and compiling one
of these projects.

Ensure wxDev-C++ is running. If the tip of the day window is displayed, close it by
clicking [Close]. Now go to:

 File|Open Project or File

 This will open the ‘Open File’ dialog. Depending on where you last opened a file this
dialog will display that directory. This dialog displays differently on other platforms so
don’t worry if yours looks different to mine.

Figure 2.2 – The Open File dialog

The sample we are about to use is stored in the \Dev-Cpp\Examples folder so you need to
navigate to it either using the folder list box (the one with the 'Look In' prompt) or by
using the 'Up One Level' icon. (If you installed wxDev-C++ in the default location then
the whole path will be ‘C:\Program Files\Dev-Cpp\Examples’). You should see the
following list.

Figure 2.3 – The examples supplied with DevC++/wxDev-C++

Open the folder ‘Jackpot’ and examine its contents. You should see the following list of
files. The one we want to open is called ‘Jackpot.dev’. Either:

 double click it to open it
 or select it and press [Open].

Figure 2.4 – The selecting a .dev project file

The .dev file contains various project settings. This includes things such as the names of
the files used in the project, options for the compiler, version numbers etc. Later on you
will learn how to alter all the settings which are included in this file.

Now you have opened the .dev file you are returned to the IDE. The tree control on the
left displays all the files included in this project, when the 'Project' panel has the focus.
For this project there is only one file called ‘main.cpp’.

 Click on 'main.cpp' to open it in the IDE.

Figure 2.5 – The list of files included in this project

The file will open in the IDE. What you are looking at now is called the ‘Source Code’.
You will notice that different line and parts of lines are in different colours. This is called
‘Syntax Highlighting’ and enables you to easily distinguish different parts of the source
code at a glance. The colouring used by the syntax highlighter can be configured to suit
your preferences so don’t worry if your colouring differs from mine.

Looking at the image below you will see the top three lines are coloured green. The lines
begin with ‘#’ and are known as ‘Preprocessor’ lines. We will deal with the Preprocessor
in more depth later.

Next you will see that certain words are shown in bold print. These are ‘Reserved
Keywords’. Reserved Keywords are words that are part of the programming language and
which you cannot use for your own purposes. You will also notice that they are all in
lower case. C and C++ are case sensitive languages, so 'Save' and 'save' are different.

Parts of lines beginning and ending with ‘ ” ’ are known are ‘String constants’ and are
coloured red. Number constants are shown in purple.

Finally lines beginning with ‘//’ or beginning with ‘/*’ and ending with ‘*/’ are coloured
blue. These are comments. Comments are there for you and other human readers to help
understand the meaning of the source code. The compiler takes no notice of comments,
so use them more than you think you need to. When you come back to a tricky piece of
code in a years time, well placed comments will dictate how long it takes to understand
the code.

Figure 2.6 – Syntax highlighted source code.

We won’t spend any time now trying to understand what all this means, because now is
the time for you to compile your first program. To compile means to pass the human
readable (I promise you will be able to read and understand this later) source code to a
program called a compiler. The compiler then translates this into binary code
understandable by a computer. Once the programme has finished compiling, providing it
finds no errors in it (See Debugging with wxDev-C++), you can run it.

There are a number of ways to compile the program but the quickest is to press
<Ctrl><F9> (See the introduction for more details). Alternatively you can use the menu
option Execute|Compile or you can press the compile button on the toolbar.

Figure 2.7 – The compile button

The compile dialog will popup next. Depending on the size of your project this next part
many take a while, but for this program it will take a second or so. When the compiler
has finished the [Cancel] button will change it’s caption to [Close].

 Click on the [Close] button.

Figure 2.8 – Compiling.

You are now back at the IDE, so what happened? Where is your new program? Don’t
worry we have only built the programme, so now we need to run it. This can also be done
from with in the IDE. Once again you have several options:

 Press the keyboard shortcut <Ctrl><F10>.

Or select 'Run' from the menu Execute|Run.
 Or use the [Run] button on the toolbar.

Figure 2.9 – Running the program

Hey presto, your new program is up and running. Play with it for awhile. The object of
the game is to guess the number the computer has chosen between 0 and 30. When you
are bored press any key and then <Enter> to exit the programme .

Figure 2.10 – The jackpot game

So far so good, but wouldn’t it be nice to compile and run the programme all in one go?
Well don’t be so lazy ☺. But in case you are and all the best programmers are lazy
(actually just interested in saving time when doing repetitive tasks). You can compile and
run using one of the following methods:

 Press <F9>.
 Or Execute|Compile & Run from the main menu.

Or use the Compile & Run button on the toolbar.

Figure 2.11 – Compiling and running in one step

Congratulations you have not only learnt to open projects, but also how to compile and
run them in one step therefore doubling your productivity. (For the male audience, who
said ‘Men can’t do two things at once?’).

Creating your own project
So you have finished playing Jackpot and you are ready to move on. This chapter was
called Compiling Your First Program. You have now compiled a programme, but not
your own,so let us move on and do just that.

There are two ways of creating a new project:

 From the menus select File|New|Project.
 Or from the toolbar, select the ‘New Project’ button.

Figure 2.12 – The new project toolbar button

Either of these methods will provide the New Project dialog. Depending on what
packages you have installed on your system this will differ accordingly. You may have
more or less tabs and more or less options on each tab.

Figure 2.13 – The new project dialog.

Among the options visible on this tab should be ‘Console Application’. If you have many
options here you may need to scroll down until you find it.

 Click on the 'Console Application' icon.

The window labeled ‘Description:’ should now alter to give you a basic description of
this project. In this case it will say ‘A console application (MSDOS window)’. The other
options shown in this dialog are the project name.

Type ‘MyHelloWorld’ in the name field
leave the other settings as they are

 press the [OK] button.

Figure 2.14 – How the New Project dialog should look

If you already have a project open a dialog will popup asking you if you really want to
close this project and start a new one. Select ‘Yes’. If you have any unsaved files you will
be prompted to save them.

Next you will be presented with a dialog asking where to save the project file. Personally
I browse to c:\Dev-Cpp and there I create a new folder called Projects (if it doesn’t
already exist) by clicking on the [Create New Folder] button.

Figure 2.15 – Creating a new folder

The new folder will be created and you will be able to edit the name.

Change the folder name to ‘Projects’, this folder will become our main store for all
future projects.
Access the 'Projects' folder by double clicking the folder name.
Create another new folder, this time call it ‘MyHelloWorld’. (For safety’s sake
don’t leave any spaces in the name since Dev-C++ reportedly has problems with
spaces in file names.)
Access the “MyHelloWorld” folder by double clicking the folder name.

Figure 2.16

The filename is already filled in from the name you chose for the project in this case
‘MyHelloWorld.dev’ so just press ‘Save’.

The project file will be saved and the IDE will display a basic source code file like the
following.

#include <cstdlib>
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
 system ("PAUSE");
 return EXIT_SUCCESS;
}

Again I will not go into details about what all this means as we cover this in the next two
chapters. Instead alter the source code to the following, making sure you change the
string constants to your own words.

#include <cstdlib>
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
 //Change the text Your name goes here to your n ame
 cout << "Hello my name is: " << "Your name goes here" << endl;
 //You can change the text between the quotes to describe yourself by day
 cout << "Mild mannered reporter by day" << endl;
 //You can change the lines between the quotes t o describe your super self
 cout << "Caped crusader by night" << endl;
 //This line pauses the program, try putting // in front of it to see what
 //happens
 system ("PAUSE");
 //This line says that the program has terminate d normally, ie not crashed
 return EXIT_SUCCESS;
}

 Press <F9> to compile and run your first program.

A pop up dialog will prompt you to save your source code. Check that the directory
shown at the top next to the label ‘Save in:’ is our project directory, in this case,
‘MyHelloWorld’. wxDev-C++ will automatically have titled the source code file
‘main.cpp’. The ‘.cpp’ extension tells the compiler and us that this is a C++ source code
file, not C or any other language. You can change the name (but not the extension) if you
wish, but I would leave it as is and press the [Save] button. Immediately the compiler will
start and a second or so later the program will run. If you made the changes suggested
they will be displayed on the screen.

Figure 2.17 – Output from MyHelloWorld program.

Congratulate yourself, you have just successfully written and compiled your first
program. Welcome to the rank of C++ programmers. But to become more proficient
study the next two chapters.

Chapter 3 – Basic C Programming

Introduction

In 1972 Dennis Ritchie wrote the C programming language for use on the unix operating
system. In 1978 Kernighan & Richie wrote ‘The C Programming Language’, this
provided a semi standard C known today as K&R C. In 1983 the ANSI (American
National Standards Institute) created a standard definition of the C language. This was
completed in 1988 and is known as ANSI C. This more or less makes K&R C obsolete
although you may come across it from time to time. Since then the ANSI committee have
produced a newer standard of C known as C99, the older version being known as C89.
C99 adds a few necessary features and borrows a few from C++.

Neither this nor the next chapter are designed to teach you how to design programmes,
which is a topic which could fill several more books (and start a few minor wars as well).
Neither are they designed to teach you the C and C++ languages in depth. That is the
place of a whole shelf full of books.

These two chapters will skim through the basics of these languages and by means of
examples give you a slight grounding in these. There are many excellent books on these
topics and several excellent websites. (Refer to learning resources in appendix yy)

WARNING: C and C++ are called ‘Case Sensitive’ languages. This means that ‘printf’

is not the same as ‘PRINTF’ or ‘Printf’. Other languages are not so strict
and this can cause problems for newcomers from such languages.

Break down of a simple example

To start with we shall look at a basic example of a C language source code file. We shall
create this in wxDev-C++ and compile it to see what it does. Next we will break it down
to see how it does what it does.

To begin the process:

• Ensure wxDev-C++ is open
• Create a new project (as in the previous chapter)
• Select the 'Console Application' option.
• Select the project option 'C Project'
• Name the project 'SimpleC'

Figure 3.1 – Project settings for the SimpleC program

 Click the [OK] button and you will prompted to close any open projects, then
 to save this project:

Browse to the Project folder we created earlier and create a new folder inside it called
“SimpleC”.

 Open the 'SimpleC' folder and save the project file.

You will be returned to the IDE with the following freshly generated code

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

 system("PAUSE");
 return 0;
}

Firstly to make it a little easier to know which lines I am referring to, let us turn on the
line numbering feature in wxDev-C++.

 Select the main menu option: Tools|Editor Options.

On the Editor Options dialog:

 Click on the second tab labeled 'Display'
 Click on the check box next to 'Line Numbers'

Figure 3.2 – Displaying line numbers

Alter the code to match the following

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #define TOP_MAN 2
5 #define THE_PRISONER 6
6
7 int main(int argc, char *argv[])
8 {
9 int i = 0;
10
11 printf("Who are you?\n");
12 printf("I am the new number %d, " , TOP_MAN);
13 printf("You are number %d\n\n" , THE_PRISONER);
14
15 for(i = 0; i < THE_PRISONER; i++)
16 {
17 printf("Thinking...\n\n");
18 }
19
20 if(i == THE_PRISONER)
21 printf("I am not a number, I am a free man!\n");
22
23 system("PAUSE");
24 return 0;
25 }

 Press <F9> to compile and run the program.

You will be prompted to save the source code file, save it in the same directory as the
project file. You should be greeted with the following output.

Figure 3.3 – Output from the SimpleC program

I am now going to break this example down into various parts which I will discuss briefly
here and then in greater depth in the following relevant sections.

The C programming language has only 32 keywords (listed in Appendix B). None of
which include the provision to output to the screen. Before you say ‘But wait a minute, I
just wrote a program which output a lot of nonsense to the screen’, let me explain. What
C lacks in keywords it makes up for in libraries. ANSI C has a large number of libraries
containing functions of various purposes. The function printf is one of these.

Before we can use these functions we need to tell C that we wish to make use of the
library containing that function. We do this using #include statements. We can see
examples of this in lines 1 & 2. All lines beginning with # are called ‘Prepocessor Lines’
and we will deal with these in the section ‘Preprocessor’. There are also two more
examples in lines 4 & 5, these lines begin with #define and create constant values.

As we have mentioned, C is made up of functions. Later on, in the section 'Functions',
you will create your own functions to get a better feel for them. C demands that there is at
least one function present in every programme and that is the main function. A function
consists of a function header and a body section enclosed by curly braces {}. The code
enclosed within the braces on lines 8 & 25 are in what is known as the ‘body’ of the
function.

Values can be stored in variables, there is one declared on line 9. The first part int is a
keyword and tells us that the variable will store an integer. An integer can only contain
whole numbers. We give the variable a name ‘i’ so we can refer to it later, as in lines 15
& 20.

WARNING: In C when a variable is created it can contain any value, so it is best to

assign it a known default such as line 9 where ‘i’ is assigned the value ‘0’.
Again this is a pitfall for new programmers or those from other languages.

Lines 15 to 18 are an example of a ‘Control Loop’ and will be covered in the next section
‘Basic C’ as will lines 20 & 21 which contain an example of a ‘Conditional Execution’.

The other lines will be covered in ‘Input/Output and other useful functions’.

Basic C

To store data within a C program we use variables. These are defined as in line 8 by first
stating the type of data the variable is to hold, then assigning the variable a unique name.
It is good form to initialise the variable by assigning it a value at this point.

Data types

There are 5 basic data types in C89. These are char, int, float, double and
void . char is designed to hold data values corresponding to a character. int is
designed to hold whole numbers. float and double hold floating point numbers and
void is a null value. Some of these data types can be extended with the keywords
signed, unsigned, long , and short . int can take all of these values, char
can be signed or unsigned and double can have long applied. Unsigned data
types can only hold numbers from 0 to their maximum range. Signed data data halve this
and give half the range to negative figures and half to positive figures. The C standard
specifies a minimum range for data types, but not a maximum which can vary between
compilers and platforms. The following program called DataSize demonstrates these
sizes.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 printf("The size of a char is %d bits\n" , 8 * sizeof(char));
7 printf("The size of a unsigned char is %d bits\n" , 8 * sizeof(unsigned
char));
8 printf("The size of an int is %d bits\n" , 8 * sizeof(int));
9 printf("The size of a unsigned int is %d bits\n" , 8 * sizeof(unsigned
int));
10 printf("The size of a long int is %d bits\n" , 8 * sizeof(long int));
11 printf("The size of a short int is %d bits\n" , 8 * sizeof(short int));
12 printf("The size of a double is %d bits\n" , 8 * sizeof(double));

13 printf("The size of a float is %d bits\n" , 8 * sizeof(float));
14 printf("The size of a void is %d bits\n" , 8 * sizeof(void));
15 printf("The size of a long double is %d bits\n" , 8 * sizeof(long double));
16 system("PAUSE");
17 return 0;
18 }

Variable names

Variable names have certain limitations. The name cannot be a keyword, it must be
unique and can contain any alpha numeric characters and underscores, as long as the
name does not begin with a number.

Statement blocks

You will have noticed in the code examples so far, the use of ‘{}’ braces. These braces
enclose code within what is called ‘Statement Blocks’. The significance of this can be
seen in the next section ‘Scope’. Braces must always be used in pairs, i.e. the opening
brace { must have a corresponding closing brace} . If you have problems with
mismatched braces see the warning on under parenthesis operators.

Scope

Variables are said to have ‘Scope’ in C and you can only refer to or use variables that are
in scope. There are several types of scope. One is global scope, variables of this type can
be accessed by all parts of your programme (which may involve several source files). A
second type is file scope, variables of this kind can only be accessed by code within a
single source code file. The significance of the difference between global and file scope
will be apparent later. The last type that we will discuss is local scope. Variables declared
within statement blocks are only visible to code that is also contained within the same
block.

Operators

Operators (=,&,%,!,| etc) break down into several groups: assignment, arithmetic,
relational, logical, bitwise, pointer, reference, indexing and parenthesis are all operator
types. There are a few others which we won't discuss at all. Pointer operators will be
discussed under ‘Pointers’, reference operators will be discussed under ‘Structures’ and
indexing operators under ‘Arrays’. Bitwise operators will not be discussed at all.

Assignment Operators

The main assignment operator is ‘=’ for example int x = 0; This expression assigns
the value zero to the variable x . The value being assigned must always be on the left of
the expression, eg 0 = int x is not a valid statement. It is also possible to do multiple
assignments for example x = q = r = t = 0; In this example the variable t is
assigned the value zero, then the variable r is assigned the value of t and so on down to

x . It is also possible to declare and assign multiple variables of the same type at the same
time eg int i=0, a=5,b=10,c=15;

If you assign variables of one data type to variables of another data type, then what is
known as an ‘automatic type conversion’ takes place. When the value on the right side of
the expression is assigned to the variable on the left, an attempt is made to automatically
convert it to the data type of the left side variable. If the type on the left has a smaller
range than the type on the right then data will be lost. The following example program
demonstrates this.

Create a new project as normal.
Call it ‘TruncationAssignment’.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 short int aShortInt= 0;
7 float aFloat = 536546.64645 ;
8 long int aLongInt= 2045654297 ;
9 /*Print the value of the long int*/
10 printf("The long int value is: %d\n" ,aLongInt);
11 /*Convert the long int to a short int*/
12 aShortInt = aLongInt;
13 printf("The long int has been assigned to a short int\n");
14 /*Print the value of the short int*/
15 printf("The value now = %d\n\n" ,aShortInt);
16 /*Repeat for a float to int*/
17 printf("The float value is: %f\n" ,aFloat);
18 printf("The float has now been assigned to a short int\n");
19 printf("The value is now: %d\n" ,aShortInt);
20 system("PAUSE");
21 return 0;
22 }

The compiler may warn you about the possibility of data loss when you do this. If you
intend to convert from one data type to another you can tell the compiler that you intend
this by using cast . For example if x is an integer then you can use this expression
float y = (float) x/3;

There are also shorthand assignment operators. Sometimes you will want to assign a
variable to itself plus or minus another value. For example x = x – 20; you can do
this in shorthand using x -= 20; ‘+=’ is also equally valid. You will see this use of
shorthand operators a lot in professional programs.

Arithmetic Operators

There are seven different arithmetic operators, the basic four:

 + for addition
 / for division

 * for multiplication
 - for subtraction

There are two shorthand arithmetic operators. These are -- and ++ which are used to
increment or decrement a variable by one. For example you can write x = x + 1; or
x++; . The shorthand operators can be used before or after a variable, for example y =
x++; or y = ++x; . You may ask what is the difference? The difference is that the first
one sets y to equal x then sets x to equal x + 1. The second sets x to be x + 1 then assigns
the result to y. A subtle but important difference.

The final operator is the modulus operator %. This can only be used with integers and it
returns the remainder of an integer division.

Relational Operators
Relational operators compare two different values and give a result of true or false (1 or
0) . The six relational operators are:

 > greater than
 >= greater than or equal to
 < less than
 <= less than or equal to
 == equal to
 != not equal to

Logical Operators

Logical operators can be used with true or false (that is 1 or 0) values. There are three
such operators:

 && AND
 || OR
 ! NOT

They give the following values according to this table.

X Y X && Y X || Y !X
0 (false) 0 (false) 0 (false) 0 (false) 1 (true)
0 (false) 1 (true) 0 (false) 1 (true) 1 (true)
1 (true) 1 (true) 1 (true) 1 (true) 0 (false)
1 (true) 0 (false) 0 (false) 1 (true) 0 (false)

Because logical operators work with true/false values they can be combined with
relational operators. For example 4>6 && 3<7 || 7!=5 .

NOTE: There is no XOR operator in C, but this can easily be created using a

function.

Parentheses Operators

C operators work on the order of precedence. This means that in an expression like the
following x = 40 + 3 / 5 + 7 * 352; does not mean that you can evaluate it from right to
left. Depending on the precedence of operators the order of calculation may be different.
To force this to be evaluated in the way you want you need to use parentheses operators
‘()’. For example x = (40 + (3/(5+(7*352)))). The innermost pair of brackets is
calculated first and then the order works outwards from that.

WARNING: Make sure that you have the same number of closing brackets as opening

brackets otherwise the compiler will issue a complaint like this:

 main.c: In function `main':
 main.c:6: error: syntax error before ';' token

 equally if you have more closing brackets than opening brackets you will

get a complaint like the following:

 main.c: In function `main':
 main.c:6: error: syntax error before ')' token

 If you are having trouble with mismatched braces you can turn on brace

highlighting. Go to Tools|Editor Options. On the dialog that appears check
the box next to ‘Highlight matching braces/parentheses’ as shown below.

 Now if you select a bracket the editor will attempt to show you the

matching bracket.

Conditional Loops
Left to its own devices, a program starts at the top and works through to the end where it
quits. Sometimes between starting and finishing you want the program to carry out the
same sequence of commands again and again. For instance you might want to print out
“Go away” 20 times until someone gets the message. You could just type in the
commands one after the other like this.

printf(“Go away!\n”);
printf(“Go away!\n”);

…

printf(“Go away!\n”);
printf(“Go away!\n”);

This might not seem too much of a hardship, but what if you wanted to do it 2000 times,
you would soon get bored of writing the same thing. It would also be hard to maintain the
code. What if you later had to reduce it to 863 times? Fortunately there is a much simpler
method called ‘Conditional looping’.

C has 3 types of loops the for loop, the while loop and the do…while loop. The
do…while loop guarantees that the contents will be executed at least once since the loop
condition is not checked until the end. The code contained in while and for loops may
never be executed since the condition is checked at the beginning of the loop, and if it is
not true the loop statement is skipped.

The for statement has this general form:

 for (<loop initialization>,<condition check>,<loop increment>)

 It is possible to make use of the ‘for ’ statement in many unusual ways, but we will only
consider the basic usage here. The ‘while ’ and ‘do…while’ loops are much simpler
since they contain only the condition check.

Create a new project called ‘Loopy’ and amend the code to the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 /* Variable to check the loop condition */
7 int i = 0;
8 printf("For loop countdown to liftoff\n");
9 for(i= 10;i> 0;i--)
10 {
11 printf("%d\n" ,i);
12 }
13 printf("We have lift off.\n\n");
14 system("PAUSE");
15
16 printf("\nWhile loop count to five\n");
17 /*Reset i to 0, then try a while loop*/
18 i = 0;
19 while(i <= 5)
20 {
21 printf("Just checked condition i <= 5 and ");
22 printf("i actually = %d\n" ,i);
23 /*Need to increment i*/
24 i++;
25 }
26 system("PAUSE");
27
28 printf("\nDo...while loop count to five\n");
29 /*Reset i to 0, then try a do...while loop*/
30 i = 0;
31 do
32 {

33 printf("i = %d and " ,i);
34 /*Need to increment i*/
35 i++;
36 printf("just about to checked condition i <= 5\n");
37 } while(i <= 5);
38 system("PAUSE");
39
40 return 0;
41 }

Code analysis: On line 7 we create the counter variable i and initialize it to the value 0.
In lines 9 to 12 we create a ‘for ‘ loop. Above we have shown that the 'for' statement can
take three arguments, the initialization, the condition check and the increment.

The initialization i=10 sets our variable i to 10 and is only done once.
The condition check i>0 checks that i is greater than zero and is done on each
loop. When the condition check produces a false answer, the loop ceases.
The increment i-- decreases the value of i by 1 on each iteration through the loop

In lines 19 to 25 we create a while loop. The condition is checked before the loop runs,
and must remain true for the loop to continue running. In this case that i is greater than
or equal to 5. Line 24 increases i by one during each loop.

In lines 31 to 37 we create a do…while loop. This is very similar to the while loop,
except that the condition is checked at the end.

If the for loop contains just a single line of code then you can use the shorthand form
which leaves out the brackets. For example lines 9 to 12 could have been written as

9 for(i= 10;i> 0;i--)
10 printf("%d\n" ,i);

In this case the code executed by the for loop ends at the semicolon at the end of line
10. It is possible to escape from a loop at anytime by using the keyword ‘break ’, this
will leave the loop and begin executing the code directly after the loop.

NOTE: The while loop ends on line 25 with a ‘}’ bracket. However the

do…while loop ends on line 37 with while(); . The semicolon at the
end of the while statement is vital, if you miss it out the program will not
compile.

WARNING: All three loops altered the check condition by altering the value of i. If the

value of i had not changed the check condition would always be true and
the loop would continue for ever. To check this, delete line 35 and compile
and run the program again. To stop the program press <Alt><F2> from
within wxDev-C++ or click on the button shown.

Conditional Execution

In programming, as in life, there will be times when you want to do something and times
when you don’t. For example if it is raining you will probably want to stay in bed and
sleep. If it is sunny you probably won’t. This is called ‘Conditional execution’ and can be
achieved using the ‘if ‘ statement.

The if statement takes the form:

 if (<Check Condition>)

 Sometimes you want to do several different things depending on the value of the check
statement, in this case you can follow the if check with else if checks or an else to
do something in the event of an if check failing. Example code follows, so create a new
project and call it ‘IfBob’, then modify the code to look like the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 int BobsAge = 0;
7 for(BobsAge = 0;BobsAge <= 100 ;BobsAge += 10)
8 {
9 if(BobsAge <= 0)
10 {
11 printf("Bob has not been born yet\n");
12 }
13 else if (BobsAge <= 10)
14 {
15 printf("Bob is a young boy\n");
16 }
17 else if (BobsAge > 20 && BobsAge <= 30)
18 {
19 printf("Bob is a young man\n");
20 }
21 else if (BobsAge <= 80)
22 {}
23 else if (BobsAge > 80 && BobsAge <= 90)
24 {
25 printf("Bob is a old man now\n");
26 }
27 else
28 {
29 printf("Bob has just got a telegram from the Queen\n");

30 }
31 }
32 system("PAUSE");
33 return 0;
34 }

In a group of if else statements, each condition is checked in turn from top to bottom
until a true one is found. The first true condition is executed. If none of them are true, the
code following the else statement is executed.

In the example the ‘if..else if..else ’ statements are inside a for loop to make
sure that they are all executed. As we noted earlier with for statements if a single line of
code follows the check then the brackets can be omitted.

The if statement is not the only conditional execution statement. There is a shorthand
form, (sometimes called a ternery operator since it takes three arguments) ‘?: ’ which
takes the form:

 <Conditional Check>?<Code If True>: <Code If False>

 The following short program illustrates this. Create a new project called BobsLife.
Change the code to the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #define ALIVE 1
5 #define DEAD 0
6 int main(int argc, char *argv[])
7 {
8 int BobStatus = ALIVE;
9 printf("Bob is ");
10 BobStatus == ALIVE?printf("alive\n"):printf("dead\n");
11 system("PAUSE");
12 return 0;
13 }

Line 10 checks BobsStatus against the value ALIVE. If this is true the first printf
statement is executed, if not the second is executed.

The final form of conditional execution statement is the switch...case statement.
This works like a series of ‘if..else if..else ’ statements. The switch statement
can only check integer values. The switch statement contains an expression, the value of
which is checked against a list of case statements. If any of the case statements match the
code contained in the switch statement, that case statement is executed. Each case
statement ends with a break statement; if this is omitted then the code in the following
case statement is executed. The final statement is called default. This contains code to be
executed if none of the case statements return true.

The following program will demonstrate this. Create a project called DayCalculator.
Modify the code to match the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #define MONDAY 1
5 #define TUESDAY 2
6 #define WEDNESDAY 3
7 #define THURSDAY 4
8 #define FRIDAY 5
9 #define SATURDAY 6
10 #define SUNDAY 7
11 #define NO_DAY 8
12
13 int main(int argc, char *argv[])
14 {
15 int day = MONDAY;
16 for(day = MONDAY;day <= NO_DAY;day++)
17 {
18 switch(day)
19 {
20 case MONDAY:
21 printf("It's Monday, off to work\n");
22 break;
23 case TUESDAY:
24 printf("It's Tuesday, long week ahead\n");
25 break;
26 case WEDNESDAY:
27 printf("It's Wednesday, halfway there\n");
28 break;
29 case THURSDAY:
30 printf("It's Thursday, one more day to go\n");
31 break;
32 case FRIDAY:
33 printf("Thank Crunchie, it's Friday\n");
34 break;
35 case SATURDAY: /*This is an example of a drop through*/
36 case SUNDAY:
37 printf("It's the weekend, let's live it up\n");
38 break;
39 default:
40 printf("Hey! This day cannot exist\n");
41 }
42 }
43 system("PAUSE");
44 return 0;
45 }

To me at least, the switch looks a little strange and 'un' C like. Watch those ‘break ’
statements, they can be the cause of major problems. Other languages like Visual Basic
have similar statements such as ‘Select ’. But in those languages the ‘break ’
statement is not required and the following statement is not executed by dropping through
as in line 35 in the above example. If in your program several statements seem to be
executed, make sure you have added the ‘break ’ statements. Remember that the default
statement will only be executed if none of the others are, or if the preceding ‘break ’
statement is forgotten.

You may wonder why ‘C’ is designed this way after all would it not just be simpler for
execution to stop at the start of the next ‘case ’ statement. Doing this would remove the
advantage of being able to execute the same code for more than one case such as in lines
35 to 37 where both Saturday and Sunday require the same output.

NOTE: You may come across statements like if(x) , what does this mean. Since

an if statement checks for true/false values if x equals 0 the if check will
fail, anything higher than 0 is considered to be true. This could be written
if(x != 0) , but this is considered bad form.

WARNING: C and C++ are unusual in that to assign a value to a variable you use ‘=’ as

in MyAge = 243; . To test for equality you need to use ‘==’ as in
if(MyAge == 243) . This is a feature that can cause many errors,
especially since this code if(MyAge = 243) will compile without the
compiler telling you there is an error. This if statement will always be
true and the code after it will always be executed.

Preprocessor
The preprocessor is an unusual feature of C. It runs before the compiler and alters your
source code by inserting function declarations from header files, expanding macro
definitions, and determining which code should or should not be compiled. Preprocessor
statements always begin with a ‘#’ and unlike C the lines don’t end with a semi-colon.

The most common preprocessor is the #include statement. This takes the form of
either #include <filename.h> for library header files or #include
“filename.h” for your own header files. As you will learn in the next section
‘Functions’, C does not allow a programmer to use a function until it knows what the
function name is, what parameters it should expect to receive, and what value the
function will return. #include statements add all that information to the start of your
source code file. In the SimpleC example we include the files stdio.h and
stdlib.h . We need stdio.h for the function printf , and stdlib.h for the
function system .

NOTE: On platforms other than Windows include file names are case sensitive

and a common error is to use the incorrect case, which results in the
compiler not finding the correct file.

The second most common is the #define statement. This is used to define a constant
name which has a value. Wherever that constant name appears in your code the
preprocessor will swap it for it’s value. This is often used for constant variables (variables
which don’t change their value). A useful feature of this is it helps to make your code self
documenting. For example you can create a define like this:

 #define DAYS_IN_A_WEEK 7

Then use it in your code:

 for(i = 0;i <DAYS_IN_A_WEEK;i++)

which makes it much easier for others to work out what you intend the code to do, than
the line:

 for(i=0;i<7;i++)

It is convention to write constant variables in uppercase.

Along with #define are #ifdef, #ifndef, #else, #endif and #undef .
These can be used to include or exclude blocks of code based on the value of a #define
statement. Code following #ifdef FRED will only be compiled if FRED has been
defined. Code following #ifndef FRED will only be compiled if FRED has not been
defined. #endif ends the code block and #undef undefines a previous #define
constant.

Finally in a similar vein are the statements #if , and #elif , they test for the truth of a
statement and work in the same manner as #ifdef including code if the statement is
true.

The following code example uses all these preprocessor statements. Create a new
‘Console Application’ called ‘Prepro’. Save it in a folder called ‘Prepro’ and then edit it
to resemble the following code example. See if you can work out what the output will be
before you compile and run it.

1 #include <stdio.h> /*include this library to allow us access to printf */
2 #include <stdlib.h> /*include this library to allow us to use system*/
3
4 #define RED_BALLOONS 99 /*Define RED_BALLOONS to be equal to 99*/
5 int main(int argc, char *argv[])
6 {
7 #ifdef RED_BALLOONS /*Check if RED_BALLOONS has been defined*/
8 printf("There were %d red balloons\n" ,RED_BALLOONS);
9 #else /*Do this if the previous #ifdef was false*/
10 printf("There were no red ballons\n");
11 endif /*End this conditional block*/
12
13 #if RED_BALLOONS < 98 /*Check if RED_BALLOONS is lower than 98*/
14 printf("There were less than 98 red balloons\n");
15 elif RED_BALLOONS > 98 /*If previous #if was false check this one*/
16 printf("There were more than 98 red balloons\n");
17 #endif /*End this conditional block*/
18
19 #undef RED_BALLOONS /*Remove define RED_BALLOONS*/
20 printf("\nBIG BANG!\n\n");
21
22 #ifndef RED_BALLOONS /*Check if RED_BALLOONS has not been defined*/
23 printf("There were no red ballons\n");
24 #else /*Do this if the previous #ifndef was false*/
25 printf("There were %d red balloons\n" ,RED_BALLOONS);
26 #endif /*End this conditional block*/

27
28 system("PAUSE");
29 return 0;
30 }

Functions
Functions are self contained blocks of code, they can be thought of as mini programs that
take in various parameters, do something with these and return a result. Functions are
defined like this:

Return_Type Function_Name (Parameter_Type Parameter _Name, …)
{
 …
 Block of code;
 …
}

The return type is either a data type such as int , float , etc, a pointer to a memory
location, a user defined data type such as a struct, or void . In the case of void you
are specifying that the function will return nothing. The function ends when it reaches a
return statement, (or the end of the code block if the return type is void). Any code
after a return statement is called ‘Unreachable code’ since it will never be executed.

The function name can be anything you wish with a few caveats. The name must be
unique, therefore you cannot create a function called printf if you #include
“stdio.h”, since this would confuse the compiler. The name must also conform to
the same naming conventions as variables. It is good form to give the function a name
that indicates its purpose, e.g. DisplayMenu instead of MyThingyFunction .

A function can take any number of parameters or none. Each parameter must be given a
name and associated data type. These data types are the same as those previously
discussed. Within the function, the parameters act as variables with local scope.

In your C programs you will always use at least one function, this is the main function.
This is a special function since program execution will start at the beginning of this
function and finish at the end of it. main follows the same rules as other functions, it has
a return type int , which is used to indicate whether the program executed without error
or not. It also takes parameters, these are passed to the program when it starts.

Functions can serve two different purposes. Firstly they can break your program into
smaller subunits to make them easier to understand. Secondly they allow you to reuse
blocks of code again and again rather than repeatedly writing the same code block.

We will create a program which uses a couple of basic functions to get a feel for them.

 Ensure wxDev-C++ is running.
 create a new ‘C’ project called ‘Functions’

 and save it in a folder called ‘Functions’ in your ‘Project’ folder.

The code follows below.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 /*This function has no parameters and returns nothi ng*/
5 void DisplayMenu()
6 {
7 printf("\n1. Calculate 5 + 4\n");
8 printf("2. Print 3 Names\n");
9 printf("3. Quit this lunacy\n");
10 }
11
12 /*This function has two parameters both are integer s it adds
13 these together and returns a integer which is the r esult*/
14 int Calculate(int FirstNumber, int SecondNumber)
15 {
16 return FirstNumber + SecondNumber;
17 }
18
19 /*This function has no parameters and returns nothi ng*/
20 void DisplayNames()
21 {
22 printf("\nThree Names\nHumphrey\nIngrid\nPeter\n");
23 }
24
25 int main(int argc, char *argv[])
26 {
27 int UsersChoice = 0;
28
29 while (UsersChoice != 3)
30 {
31 /*Call function to show menu*/
32 DisplayMenu();
33 /*Function from stdio.h which reads the users input */
34 scanf("%d" ,&UsersChoice);
35
36 if(UsersChoice == 1)
37 /*Call the Calculate function from within the print f function*/
38 printf("\n5 + 4 = %d\n" ,Calculate(5, 4));
39 else if (UsersChoice == 2)
40 /*Call the DisplayNames function*/
41 DisplayNames();
42 }
43
44 return 0;
45 }

The programme starts at the beginning of the main function. It declares a variable
UsersChoice and sets it’s value to 0. It then enters a conditional loop, and as long as
the variable UsersChoice doesn’t equal 3, it will continually execute the statements
inside. Within the loop, the first call is to the function DisplayMenu . This prints the
menu on the screen. Then it calls a function that is new to us, scanf . (We will learn
more about scanf later.) The programme now enters a conditional execution area,
where, depending on the value of UsersChoice, it either calls the function

Calculate or DisplayNames . Finally, once UsersChoice equals 3, the return
statement is executed and, as we have learnt, that is the end of the main function so the
programme ends.

Does it matter where we put a function in our source code? The answer is both yes and
no. To demonstrate this we will create another project.

Carry out the usual project creation process calling the new project PostFunction.
Create a new folder called PostFunction and save the project there.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 DisplayBoringMessage();
7 system("PAUSE");
8 return 0;
9 }
10 /*This is a boring function*/
11 void DisplayBoringMessage()
12 {
13 printf("This is a boring message\n");
14 }

Before trying to compile this programme, try to work out what will happen when it runs.
Then press <F9>. You should find the programme doesn’t run and inside the message
window on the bottom of the IDE, displays the following errors.

Figure 3.4 – Error message.

Get used to such messages you will see them a lot as you progress. But what was wrong?
Let us try to work it out from the message. The first line says ‘conflicting types for
DisplayBoringMessage’, that’s the name of our function so what is wrong with it. Well
the first error has come in line 12 of our source code. The next error message tells us that
in line 6 there was a ‘previous implicit declaration of ‘DisplayBoringMessage’’. Why is
this? Because before you use a function C needs to know about it.

We can get around it by ‘Declaring’ the function that is by telling the compiler what the
function name is, what the return type is and what parameters it takes. Try adding the
following line into the source code in line 3.

void DisplayBoringMessage();

Since this is a declaration it ends with a semi-colon. Press <F9> to compile and run. You
should see that the program runs just fine now. The line you added is called the
‘Declaration’ of the function and the code in lines 11-14 is called the ‘Definition’ of the
function. When you include header files you are actually including the declaration of
function like printf so that you can use them.

Before we move on to look at some common and useful functions that are included in the
C standard library we will look at functions that can take a variable number of arguments.

This type of function is defined by using ‘…’ to say the function accepts a variable
number of arguments. The function must contain at least one known parameter before the
variable list of arguments. The reason for the known parameter is discussed after the
example. The most common function to use this format is the printf function. The
prototype of this style of function is

int MyFunction(int AnInteger, float AFloat = 5.4 , …);

So far so good, but how do we know how many extra arguments the user has passed in
and how do we access them? For a start we need to include <stdarg.h> which defines
various macros we need to use. Let’s look at a sample program first that uses a function
with variable parameters then we will break it down.

Carry out the usual project creation process calling the new project
VariableFunction.
Create a new folder called VariableFunction and save the project there.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <stdarg.h>
4
5 int AutoSumFunction (int NumberOfArguments, ...);
6
7 int main(int argc, char *argv[])
8 {
9 int Total = 0;
10 Total = AutoSumFunction (6, 12, 54, 24, 75, 45, 23);
11 printf("The total is %d\n" , Total);
12 system("PAUSE");
13 return 0;
14 }
15
16 int AutoSumFunction (int NumberOfArguments, ...)
17 {
18 int Sum = 0, CurrentValue = 0;
19 va_list ArgumentPointer;
20
21 /*We need to use va_start to get the start of the
22 argument list and store this in the argument pointe r.
23 The macro va_start does this*/
24 va_start(ArgumentPointer, NumberOfArguments) ;
25

26 /*Now we will create a loop that counts down the nu mber
27 of arguments.*/
28 for(;NumberOfArguments;NumberOfArguments--)
29 {
30 /*We get the next value from the list of arguments,
31 we need to tell va_arg what type of value we expect */
32 CurrentValue = va_arg(ArgumentPointer, int);
33 Sum = Sum + CurrentValue;
34 }
35
36 /*We must call va_end otherwise the program could c rash*/
37 va_end(ArgumentPointer);
38
39 /*Return the total*/
40 return Sum;
41 }

Press <F9> to compile and hopefully you should see the output “The total is 233”. So let
us breakdown this example to see what happens.

Line 3 - We include the header file <stdarg.h> this gives us access to va_list,

va_start, va_arg and va_end .

Line 5 - We create the prototype of our AutoSumFunction . It is defined as returning

an int value which is the sum of all its arguments. It takes one integer value
which is the number of arguments we are going to pass in. Then it takes any
number of other arguments.

Line 10 - We use the function passing in a 6 to say that we are going to give it six

arguments. Then we pass in six integer values.

Line 19 - We use the data type va_list to create a pointer called

ArgumentPointer . This is a pointer that we will use to access the list of
arguments. We will learn more about pointers in the section ‘Pointers’.

Line 24 - We call the macro va_start passing it the pointer ArgumentPointer

and the name of the first variable NumberOfArguments . This initialises our
pointer to point to the first argument after NumberOfArguments .

Line 28 - We create a for loop which we will use to access the list of arguments. We

don’t fill the first part of the for loop since NumberOfArguments already
has a value. If you remember the second part of the for loop checks for a
true/false value. We use NumberOfArguments here, which means if
NumberOfArguments equals 0 then stop looping. The last part of the for
loop decreases the value of NumberOfArguments by 1 each time.

Line 32 - We assign the return value from va_arg to CurrentValue . The parameters

of va_arg are the ArgumentPointer pointer and the data type we expect
the next argument to be.

Line 37 - We call va_end passing in the ArgumentPointer . Failing to do this is

likely to lead to a program crash.

So we have seen how to access the variable list of arguments, but what about the other
question, how do we know how many arguments there are? The answer unfortunately is
we don’t. That is why we need the first argument. To experiment with the truth of this

 Alter line 10 to

 Total = AutoSumFunction (6, 12, 54, 45, 23);

Then run the program.

You should find the result vastly different to the sum of 12,54,45 & 23. You might also
like to experiment with adding more arguments while leaving the first one as 6.

WARNING: Line 28 is somewhat dangerous we use the check

NumberOfArguments . This will stop the loop when
NumberOfArguments is equal to 0. But what if someone changed line
10 to Total = AutoSumFunction (- 6, 12, 54, 45, 23); .Then
NumberOfArguments would never equal zero.

We will learn more about functions in the next two sections, ‘Input/Output and other
useful functions’ and ‘Pointers’.

Input/Output and other useful functions
Earlier I said that C contains no keywords dealing with output to the screen and that
functions were used instead. We have so far seen two functions dealing with input and
output, printf and scanf . The good news is if you learn about these two the rest of
the input/output functions are fairly easy to learn.

Besides the input/output functions, we shall skim the wealth of functions C has available
for the programmer.

Input/Output to the screen

Output

We shall start by looking at output, after all it is much more exciting to create a program
that visibly does something, than one that you type a lot into and nothing seems to
happen.

C has three output functions putchar , puts , printf . The first two are simple
functions, putchar takes a char argument and prints it to the screen. The second takes

a string constant and prints it to the screen. The final one printf is far more complex
and we will explore it in more depth.

The prototype of the printf function is:

int printf(const char* string, …);

The return value from printf is either the number of characters it has written to the
screen or a negative value if there has been an error. The first argument to printf is the
string you wish to display in the console. For example:

 printf(“C Programming is amazing”);

This would result in the line ‘C Programming is amazing’ being displayed in the console.
But what about the second argument that string of dots? You may remember from our
discussion of functions this represents a variable list of arguments. We have already used
this feature in our sample programs. Within the string passed to printf as the first
argument we can embed format specifiers at the points where we want to insert values.
The format specifiers start with a ‘%’ and these are also used in the function scanf .
Every time the function finds a ‘%’ sign embedded in your sting it looks for a matching
argument and depending on the code after the ‘%’ sign outputs the argument in this
format. For example:

printf("I am %d today and my name is %s",200,"Rip V an
Winkle\n");

In this example printf would output ‘I am ‘ then it would meet the ‘%’ sign it looks to
see what follows in this case a ‘d’. It now looks for the first variable argument which is
‘200’, since the format code was ‘d’ it outputs this as an integer. Next it continues to
output ‘today and my name is ‘ again it comes to a ‘%’ sign again it looks for the format
sign in this case ‘s’ so it formats the second argument as a string. A list of all the format
specifiers follows.

Code printf scanf

%a Hex output in form 0xh.hhhhp+d (C99) Input a floating point (C99)
%A Hex output in form 0xh.hhhhP+d (C99)
%c Output a character Input a character
%d Output signed decimal integer Input a decimal integer
%e Output in scientific notation lowercase e Input a floating point
%E Output in scientific notation uppercase E
%f Output decimal floating point Input a floating point
%g Output in the shorter of %e or %f Input a floating point
%G Ouput in the shorter of %E or %f
%i Output signed decimal integer Input a decimal, octal or

hexadecimal integer
%n Stores number of characters written in an Stores number of characters read in

integer pointer an integer pointer
%o Output unsigned octal Input an octal
%p Displays pointer Input a pointer
%s Ouput character string Input a string
%u Output unsigned decimal integer Inputs an unsigned decimal integer
%x Output unsigned hexadecimal

(lowercase)
Input a hexadecimal

%X Output unsigned hexadecimal
(uppercase)

%% Outputs ‘%’ sign Inputs a ‘%’ sign
%[] Reads a set of characters

The format specifiers in printf can also be modified in various ways. These are:

• Minimum field width – Placing an integer between the ‘%’ sign
and the format code ensures that the
output is padded with spaces until it
reaches the specified length. If it is longer
than the specified length it is output in
full.

• Output precision - The field width modifier can be followed
by a decimal point and another integer.
For floating point values this specifies the
number of decimal places displayed. For
strings this specifies the maximum
number of characters displayed. For
integers it specifies how many digits are
displayed leading zero are used to pack
the difference.

• Output justification - By default the output is right justified, by
adding a minus sign after the ‘%’ sign you
can alter the output to be left justified.

• long and short data type modification - The modifiers ‘l’ for long and ‘h’ for short
can be added to the format specifiers
d,i,o,u,x and n to change them to long or
short data types. The modifier ‘L’ can
similarly be used with format specifiers
e,f, and g to specifiy a long double.

• Added decimal point - Using a ‘#’ sign after the ‘%’ sign before
g,G,f,e or E specifiers causes a decimal
point to be displayed.

• Added hexadecimal sign - Using a ‘#’ sign after the ‘%’ sign before
x or X specifiers causes a 0x prefix to be
displayed.

• Variable output precision - Instead of using the format ‘%5.4f’ it is
possible to use ‘%*.*f’. For each ‘*’

printf will look for the value to replace
it from the list of variable arguments.

NOTE: Remember when we discussed variable argument functions we said that

va_arg needed to be told what data type was expected. That is the reason
for the different format specifiers. Each time printf finds a ‘%’ in the
string it looks for the next variable argument and returns it as the type
listed in the above table. If your output from a printf function looks
strange or gives wrong results make sure you are using the correct format
specifiers. Also make sure you have the same number of arguments as
format specifiers.

Input

To match the three output functions C provide three input functions getchar , gets
and scanf . Once again the first two are simple functions, getchar returns a char
from the input buffer, gets takes a string array (there is more about arrays in the
sections, ‘Pointer’, ‘Memory allocation’, ‘Arrays’ and ‘Strings’). The final function
scanf is like its sibling printf a far more complex function that we will explore.

The prototype of the scanf function is:

int scanf(const char* string, …);

The return value from scanf is the number of items that have been assigned a value or
in the event of an error it returns EOF. EOF is a constant whose value can change from
one compiler to another so just use the constant name EOF.

The first argument to the scanf function is a string of format specifers, for each format
specifier you need to include an argument which is a place for scanf to store the values
it reads in from the keyboard. It works in a very similar way to printf , the main
different is that the variable arguments all need to be addresses to variables. We will
discuss addresses under the topic pointers, but for now just accept that this means putting
a ‘&’ sign in front of each of the arguments. For example:

scanf("%d%f%s",&Int,&Float,&String);

In the above line the scanf would read the first input from the keyboard and store it in
the variable ‘Int’, the second input would be stored in ‘Float’ and the final input in
‘String’.

There are a few hazards with scanf . The first is that in some implementations it buffers
the lines. This means that if you use scanf to read single characters it won’t do anything

until you press [Enter]. Secondly when reading strings it reads in everything until the first
white space character which is either a space, tab, vertical tab, formfeed or newline. For
example scanf would read the line “Welcome friends and Romans” as “Welcome”. To
read in a whole line including white spaces you need to use gets .

The scan set ‘%[]’ format specifier tells scanf to read in only those characters contained
in the set. For example:

scanf(“%[GgeRhdW]”,&String);

In the above example scanf will store the users input in the variable String. Any of the
characters G,g,e,R,h,d,W will be stored. As soon as scanf encounters a character that is
not in this range it will stop reading. The scan set is also case sensitive so G is not the
same as g.

Like printf scanf supports various format modifiers these are as follows:

• Maximum field width - Inserting a number between ‘%’ and the
format code will cause only that number
of characters to be read.

• Long and short data type modifier - These are the same as printf l,h & L.
These alter the length of the data type.

• Discard field - Inserting a ‘*’ between the ‘%’ and the
format code will cause the input to be read
but not assigned to any variable.

Since all this may be a lot to take in let’s create a sample program which makes use of
these features. Take your usual steps to create a new C project.

Call the project ‘InputOutput’.
Save it in a new folder called ‘InputOutput’.
Alter the generated code to match the following

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 char FirstNameString[200];
7 char LastNameString[200];
8 int AgeInteger, Count;
9 float MyAgeFloat;
10 printf("Hello what is your first name\n");
11 scanf("%s" ,&FirstNameString);
12 printf("\nHello %s, what is your last name?\n" , FirstNameString);
13 scanf("%s" ,&LastNameString);
14 printf("\nSo you are %s %s\n" , FirstNameString, LastNameString);
15 printf("How old are you %s\n" , FirstNameString);
16 scanf("%hd" , &AgeInteger);
17 MyAgeFloat = AgeInteger + 0.2 ;

18 printf("\nThat's funny I am %*.*f\n" , 4, 2,MyAgeFloat);
19 printf("\nThis is right justified");
20 printf("\n%23s\n" ,FirstNameString);
21 printf("\nThis is left justified");
22 printf("\n%-23s\n\n" ,LastNameString);
23 printf("%s%n contains " ,FirstNameString,&Count);
24 printf("%d characters\n\n" ,Count);
25 system("PAUSE");
26 return 0;
27 }

Press <F9> to compile and run.

The output should resemble this

Figure 3.5 – Output from InputOutput program

Most of the program should be self explanatory lines of note are:

Line 18 where the %*.*f format specifier is used. The next two arguments specify
the total number of digits to display and the number of digits that appear after the
decimal point.

Line 20 specifies that the output should be at least 23 characters wide. This causes
the text to be right justified.

Line 22 specifies that the output should be 23 characters wide the ‘-‘ sign causes it
to be left justified.

Line 23 outputs the users first name then stores the number of characters output
into the variable Count. This is used in the next line to say how long the user’s
first name is.

Next we shall look at the functions C provides to read and write files.

Input/Output to Files

The design of C is influenced by Unix which has the philosophy that everything is a file.
This shows through in the design of the input/output functions. As a result the functions
to read and write files are very similar to those you have already met. Actually the output
console and input keyboard are also treated as files. These have the predefined names
STDOUT and STDIN. The difference is that printf , scanf and the like use them
transparently.

In order to read or write files you need to open them first and close them when you have
finished with them. The header file you need to include is <stdio.h> this allows you
to use the FILE type as a pointer to files.

To open we need to use the function fopen , the prototype of this function is defined in
the following way.

FILE * fopen(const char * filename, const char * mo de);

If the function succeeds the return type is a pointer to a valid FILE structure. If it doesn’t
succeed then it returns a NULL pointer. (If this makes as much sense to you as a speech
in Klingon then look ahead to the sections on ‘Pointers’ and ‘Structures’). The first
argument is a string constant which contains a valid filename or file path. Examples of
these are “Readme.txt” or “C:\\Windows\\Readme.txt”. The second argument is a flag
indicating what mode to open the file. The various options are contained in the following
table.

Flag Meaning
a Open or create a text file and append to the end of it
r Open a text file to read from it
w Create a text file to write to it
ab Open or create a binary file and append to the end of it
rb Open a binary file to read from it
wb Create a binary file to write to it
a+ Append or create a text file as read/write
r+ Open a text file to read/write from it
w+ Create a text file to read/write to it
a+b Append or create a binary file as read/write
r+b Open a binary file to read/write from it
w+b Create a binary file to read/write to it

When you have finished using a file you then need to close it. In order to do this you need
to use the function fclose . The prototype of fclose is declared this way.

int fclose(FILE * FilePointer);

If successful the fclose function returns 0 otherwise it returns EOF.

Output

The file output functions are very closely related to console output functions. They are so
similar that they have the same names just with an f appended to the front of them, so we
get fputc() , fputs() and fprintf() . The other major difference is that they all
require a FILE pointer to a valid file. fprintf() is the only function we will discuss
here. Its prototype is declared as:

int fprintf(FILE * filepointer, const char * string ,…);

You may notice that other than the addition of the FILE pointer, it looks exactly like the
prototype of the printf() function earlier. In fact it also works in exactly the same
way as the sample program that follows the next section will demonstrate.

Input

Like the functions described in the previous section the file input functions are just the
same as the console input functions just with an f appended to the front and an extra
argument which is a valid FILE pointer. So we get fgetc() , fgets() and
fscanf() once again it is fscanf() that we will discuss. The declaration of the
prototype is as follows:

int fscanf(FILE * filepointer, const char * string, …);

So let us look at an example of using these two function fprintf and fscanf . As
usual

Start up a new C console project.
Call it SingleFile.
Save it in its own folder called SingleFile.
Then alter the generated source code to match the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 char Name[100];
7 int Age;
8 char NameFromFile[100];
9 int AgeFromFile;
10
11 FILE * OurFile;
12
13 /*Demonstrate that we can read and write to and fro m the console
14 using fprintf and fscanf with the pointers stdout a nd stdin*/
15 fprintf(stdout, "Please enter your first name and your age\n");
16 fscanf(stdin, "%s%d", Name, &Age);
17
18 /*Try to open a file to write to, check it is valid */

19 if((OurFile = fopen("Test.txt" , "w")) == NULL)
20 {
21 /*If the file pointer is NULL complain and exit*/
22 fprintf(stdout, "Sorry but I can't open a file to write to\n\n");
23 exit(1);
24 }
25
26 fprintf(stdout, "\nWriting your information to file\n");
27 /*Use the OurFile pointer to write information to t he file*/
28 fprintf(OurFile, "%s %d" , Name, Age);
29 /*Close the file now we have finished with it*/
30 fclose(OurFile);
31
32 /*Try to open a file to read from, check it is vali d*/
33 if((OurFile = fopen("Test.txt" , "r")) == NULL)
34 {
35 /*If the file pointer is NULL complain and exit*/
36 fprintf(stdout, "Sorry but I can't open a file to read from\n\n");
37 exit(1);
38 }
39
40 fprintf(stdout, "Reading your information from file\n");
41 /*Use the OurFile pointer to read information from a file*/
42 fscanf(OurFile, "%s%d", NameFromFile, &AgeFromFile);
43 fclose(OurFile);
44
45 fprintf(stdout, "\nYour name is %s, " , NameFromFile);
46 fprintf(stdout, "and your age is %d\n" , AgeFromFile);
47
48 system("PAUSE");
49 return 0;
50 }

Compile and run this program.

Some of this program should be fairly obvious from the program we used to demonstrate
using printf and scanf. But I’ll discuss some of the lines that differ.

Line 15 - The effect of this line is the same as using printf but instead we use fprintf and

the pointer called stdout. This pointer as we discussed earlier writes directly to
the console.

Line 16 - This line does the same as line 15 but used fscanf along with the pointer stdin

to replace scanf.

Line 19 - We use the function fopen to attempt to open a file called Test.txt from writing

to. We test the value of the returned pointer against the value NULL. If they
match there has been an error while opening the file and we cannot use it.

Line 23 - If the file pointer is NULL we call the function exit with the value 1. This ends

the program at this point and signals that the program has halted in an error
state.

Line 28 - We write the values captured earlier to the file.

Line 30 - We close the file as soon as we have finished using it.

Line 42 - We read the values back in from the file, to prove that these are not just stored

in memory we use different variables.

Line 43 - Once again we close our file as soon as we are finished with it.

While fscanf and fprintf are very powerful and fairly easy to use they are not the
most efficient since they involve converting from binary to characters. For large amounts
of data reading and writing there are other better options these are mentioned briefly in
the next section but are beyond the scope of this book.

Other file handling functions

This is only the tip of the iceberg when it comes to file handling routines. If you are
interested (and I know you are) then consider it a matter of homework to find out about
fseek, ftell, feof, ferror, rewind, remove, fflush, fread and fwrite. These functions expand
the file handling capabilities of C far beyond simple reading and writing of text files.

Some other useful functions

The following table lists some of the other useful functions that C provides.

Various functions – Contained in <stdlib.h>
double atof(const char* str) Converts the string str into a double which

it returns.
int atoi(const char* str) As above but converts to an integer value.
long int atoll(const char* str) As above but for a long integer value.
int rand(void) Returns a random number between zero

and RAND_MAX (this is at least 32,767).
void srand(unsigned int seed) Sets a start point for the rand function.

There are many more functions contained in a range of header files that we haven’t even
discussed. It is well worth exploring what is available as there is little more annoying
then struggling to write a function only to find that it has already been provided for you.

Pointers

So far we have mentioned pointers a few times indeed it is nearly impossible to talk about
C at any length without mentioning pointers. They are one of the greatest strengths of C.
Unfortunately they are also one of the greatest dangers in C programming. So what is a
pointer?

The memory in a computer is like one great big road. All along the road are houses. Each
house contains a piece of data. So how do we locate a piece of data. Well each house has

an address so we can use that address to locate the data. For some important buildings
there may be a sign pointing to that building with a name on it. A pointer in C is exactly
the same. The sign is a variable and the value it holds is the address within the computers
memory of the start of the piece of data it points to.

To define a variable as a pointer we use a ‘* ’ after its data type and before the variable
name. For example:

int * MyIntPointer;

But how do we get the address of a piece of data to point to? Using the ‘&’ operator
before a variable name returns the address of that variables data. We saw an example of
using this in the function scanf .

However most times you don’t want to know where a piece of data is stored rather you
are more interested in knowing what is stored there. To retrieve the value stored at the
address the pointer references you can use the ‘*’ operator. For example:

int AnInteger = *MyIntPointer;

This assigns the value referenced by MyIntPointer to the variable AnInteger.

WARNING: Like any variable in C when you define a pointer as above it points to a
random value therefore it is good practice to assign it a value when you
define it. If you have a value to point to then you can define it like this

 int * MyIntPointer = &AnInteger;

 Otherwise you can assign it the value NULL.

 int * MyIntPointer = NULL;

 NULL is used because it is guaranteed to point to nothing. Most functions

that return a pointer to a section of memory will return NULL if there has
been an error. In this case it is necessary to check what the return value is
before using the returned pointer.

 Uninitialised pointers are a common cause of errors in C programming.

The best you can hope for are unexpected outputs. The worst is programs
that crash or on older operating systems computers that crash. The reason
for this is that you are operating on memory that belongs to another part of
the program or to another program. Such problems can be very tricky to
track down.

As we have already seen we can use pointers to point to variables we have already
declared. We can also use pointers to allocate fresh memory. As we shall see in the next
section.

To demonstrate pointers and the different operators they use let us create another example
program. As usual

Create a new C project.
Name the project ‘Pointy’.
Save it in a new directory called ‘Pointy’.
Change the generated code to match the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(int argc, char *argv[])
5 {
6 int Number1 = 5, Number2 = 12, Total = 0;
7 int * MyIntPointer;
8
9 /*Use MyIntPointer to reference Total. We need to u se '&'*/
10 MyIntPointer = &Total;
11 /*Use MyIntPointer to display value and location of variable Total*/
12 printf("The value of Total = %d.\n" , *MyIntPointer);
13 printf("The Location of Total is %d\n" , MyIntPointer);
14 /*Use MyIntPointer to alter the value of Total*/
15 *MyIntPointer = Number1 * Number2;
16 /*Display the location and value of Total
17 displaying that MyIntPointer changed it*/
18 printf("The value of Total = %d.\n" , Total);
19 printf("The location of Total is %d\n" , &Total);
20
21 system("PAUSE");
22 return 0;
23 }

This program demonstrates the use of pointers to manipulate the values held in a memory
location. By now the lines up to line 9 should make sense to you. Let us consider some of
the other lines.

Line 10 - uses the ‘&’ address operator to assign the address of the variable Total to the

pointer MyIntPointer.

Line 12 - uses the ‘*’ operator to print out the value held in the memory location pointer

to by MyIntPointer.

Line 13 - then prints out the value of MyIntPointer which is the memory location of

Total.

Line 15 - assigns the value of Number1 * Number2 to the memory location pointed to by

MyIntPointer.

Line 18 - out the value of Total showing that it has been altered by means of the
MyIntPointer.

We will learn more about pointers in the following sections ‘Memory allocation’ ,
‘Arrays’ and ‘Strings’.

Memory allocation

Within C programming a distinction is made as to where the memory you use is allocated
from. There are two terms used the stack and the heap. It is not vital to know about these
but you will come across the terms every now and then so it is useful to understand the
difference.

As your program runs it allocates memory from the stack. As each function is called it is
placed on the memory stack, any variables declared within the function are also placed on
the stack. As the function ends it is removed from the stack and any variables local to
function are destroyed (as you may remember from the discussion on scope earlier).

Sometimes though you want to store data within a function yet use it later. If this
information was stored on the stack it would be destroyed when the function returns. To
avoid this you can allocate memory on what is called the heap. You are responsible for
deciding when memory you require from the heap is created and destroyed. C provides a
library of functions dedicated to memory allocation and destruction. We shall look at
these now.

The header file we need to include to use these functions is <stdlib.h> . There are
four functions that can be used malloc , calloc , realloc and free . We shall
consider each of these.

malloc The function protype is

 void* malloc(size_t SizeInBytes);

 To use the function it is necessary to specify the amount of memory you

want to ask for, malloc then returns a pointer which references the
location of this memory. This pointer is a void pointer which you need to
cast to the correct type for your use. If the function is unable to allocate the
memory it will return a NULL pointer. For Example:

int * MyIntPointer = NULL;
MyIntPointer = (int*) malloc(sizeof(int));
If(MyIntPointer)
...

First we declare MyIntPointer to be a pointer to type int . We assign it the
value NULL. Next we use malloc and ask for a piece of memory the size

of an int . We cast the returned pointer from malloc from type void to
type int . Then assign this to MyIntPointer. Finally we check the
MyIntPointer does not point to NULL before using it.

calloc The memory returned by malloc contains random values. calloc

intializes all the bits in the returned memory to zero. The prototype for
calloc differs from malloc and is declared as

void * calloc (size_t Number, size_t Size);

 To use calloc we need to specify the number of units we want and the

size of these units. For example:

int * MyIntPointer = NULL;
MyIntPointer = (int*) calloc(1,sizeof(int));
If(MyIntPointer)
...

 This example is the same as the one for malloc the difference is that we

ask for one unit of size int . The returned memory will be allocated to zero.

realloc Sometimes you may find that you haven’t allocated enough memory and

need to enlarge your allocation that is when you need realloc . The
protype for realloc is

void * realloc(void * ExistingPointer, size_t
SizeInBytes);

 To use realloc we need to use our pointer to the existing block of

memory. Followed by the size we need the new block to be. realloc
returns a pointer to the new memory block. Again this can be NULL if there
has been an error.

free Once you are done with the memory you have created with the above

functions you need to free the memory allocated. You can do this with the
free function. The prototype for free is declared as

void free(void * ptr);

 You call free with the pointer that you have received back from one of the

above operations.

WARNING: It is vital that you free all memory that you have previously allocated.

Otherwise when your program ends this memory can still be allocated.
This section of memory is then never freed for other programs to use. This

is called a memory leak. In low memory situations programs with memory
leaks can cause operating systems to crash.

Arrays

An array is a block of memory consisting of a number of the same type of data units.
There are many instances in which using arrays makes sense. For example you may wish
to store the ages of your family members. You could do this by creating a new variable
for each member. E.g.

int Member1 = 34, Member2 = 54, Member3 = 23;

To print out a list of ages you could do the following

prinf(“Member 1 = %d, Member 2 = %d, Member 3 = %d” ,
Member1,Member2,Member3);

This is fine for a few family members. But what if you have a huge family? That
printf statement is going to get unwieldy. The answer is an array.

An array is defined in the same manner as a variable the difference is that after the
variable name you enclose the number of units you need in square ‘[]’ brackets. For
example:

int FamilyMembers [10];

This would give you an array of 10 integers named FamilyMembers. An array is not
much use unless you can fill it with values and retrieve them. So how do we fill it? The
first way is by filling it when we declare it to do this we put an equals ‘=’ sign after the
square brackets and then list the values between ‘{}’ brackets. For example:

int FamilyMembers[3] = { 24, 54, 63};

This is called array initialization. It is also possible when initializing arrays at the same
time as declaring them as above to miss out the array size in the square brackets. The
compiler will automatically work out the size of the array for you for huge arrays and
strings this can be a blessing.

Alternatively you can fill each section of the array by referring to it by its index number.
One important point is that in C arrays start at index 0. So in the previous example
FamilyMembers starts at index 0 and ends at index 2. So we can refer to them this way:

FamilyMembers[1] = 45;
printf(“Uncle Fred is %d years old” ,FamilyMembers[1]);

What is not immediately apparent is that all arrays in C involve using pointers, this is
because the array name is just a pointer to the memory location of the first element of an
array. So the above could be written as:

*(FamilyMembers + 1) = 45;
printf(“Uncle Fred is %d years old” ,*(FamilyMembers +
1));

So let us look at an example programme that demonstrates using arrays and pointers. As
per usual

Create a new C project.
Call it ‘TodaysArray’.
Save it in a folder called ‘TodaysArray’.
Alter the code to match the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 /*Create a define for our array size*/
5 #define DAYS_IN_A_WEEK 7
6
7 int main(int argc, char *argv[])
8 {
9 /*Create array and fill it*/
10 int TodaysLuckyNumber[DAYS_IN_A_WEEK] = { 35, 64, 23, 86, 23, 12, 43};
11 int ArrayIndex = 0;
12
13 /*Loop through array and print out the days lucky n umber*/
14 for(;ArrayIndex < DAYS_IN_A_WEEK; ArrayIndex++)
15 printf("For day number %d the lucky number is %d\n" ,
16 ArrayIndex + 1,TodaysLuckyNumber[ArrayIndex]);
17
18 /*Reset the index*/
19 ArrayIndex = 0;
20 /*Print a new line*/
21 printf("\n");
22
23 /*Now do it all again using pointers*/
24 for(;ArrayIndex < DAYS_IN_A_WEEK; ArrayIndex++)
25 printf("For day number %d the lucky number is %d\n" ,
26 ArrayIndex + 1,*(TodaysLuckyNumber + ArrayIndex));
27
28 system("PAUSE");
29 return 0;
30 }

As usual let us break down the lines of interest to us.

Line 5 - We define a constant value to use in creating the array and for use in the loop

that indexes the various elements. The beauty of this is that if you need to
resize the array you can alter the value of the constant. The constant also helps
the program to be self documenting.

Line 10 - We create an integer array called TodaysLuckyNumber. We fill the contents of
the array at the same time as we create it.

Line 14 – We create a for loop the first part is empty since we have already initialised

ArrayIndex to 0. We check ArrayIndex is lower than DAYS_IN_A_WEEK
since if you remember the array starts at 0 and ends at size – 1.

Line 16 - We print out the value of the index plus one and the value contained in

TodaysLuckyNumber[index].

Line 26 – We repeat the actions of line 16 the difference is in the second part where we

use the variable name as a pointer. We use ‘* ’ to obtain the value from
TodaysLuckyNumber. We add ArrayIndex to the value of
TodaysLuckyNumber to move the pointer along. We need to include this in
braces otherwise we end up adding the value of ArrayIndex to the contents of
TodaysLuckyNumber (remember operator precedence).

It is possible to create 2, 3 or more dimensional arrays, but that is beyond the scope of
this book. Again if you are interested there are many excellent resources on the Internet
to help you. Our discussion of arrays leads us next to consider string handling in C.

Strings

String handling in C is considered by many to be one of its weak points. The main reason
for this is that strings are implemented using arrays of type char . This is different to
other programming languages which consider a string to be a data type in its own right.
As a result strings have a tacked on feel about them and require functions to achieve basic
operations.

We saw in the above section how to declare and initialize arrays at the same time we can
do the same with strings. Remember that a string is just an array of characters. So we can
initialize it like this:

char MyString[] = {'I',' ','a','m',' ','b','o','r','e', 'd','\0'};

Wow! That is so long winded. There must be an easier way to initialize strings. Luckily
there is. The above example can be declared and initialized in the much more user
friendly manner of:

char MyString[] = “I am bored”;

Ah, but what a minute surely those two lines don’t have the exact same meaning. The
first has a ‘\0’ thing at the end and the second one doesn’t. The ‘\0’ thing on the end is the
null terminator. This tells functions that are working with the string where the string ends.
It is missing in the second line because using the shorthand method of initialization
automatically adds the null onto the end. So the second method is not just easier, it’s
quicker, smarter and washes the dishes.

So what can we do with strings? We have already seen that we can print them out and
read them in. However with the use of various functions there are all sorts that we can to
with them. We can compare strings, add strings to other strings, find out how long they
are and much more.

The following table shows the some of the various string and character operation
functions plus the header files they are contained in.

String functions – Contained in <string.h>
char * strcpy (char * str1, const char * str2) Copies str2 into str1. str2

must be null terminated
char * strcat (char * str1, const char * str2) Adds str2 to the end of str1

and adds a null terminator,
you need to make sure str1
is long enough for this

char * strchr (const char * str, int ch) Returns a char pointer to
the first occurrence of the
character ch in the string str

int strcmp (const char * str1, const char * str2) Compares str1 to str2.
Returns a zero value if both
strings are the same, a
negative value if str1 is less
than str2 and a positive
value if str1 is greater than
str2

size_t strlen (const char * str) Returns an integer
containing the length of a
null terminated string str.
The terminator is not
counted.

char * strstr (const char * str1, const char * str2) Returns a char pointer to
the first occurrence of the
string str2 in the string str1

Character functions – Contained in <ctype.h>
int isalnum(int ch) Returns a non zero value if

the character ch is a letter or
number

int isalpha(int ch) Returns a non zero value if
the character ch is a letter

int isspace(int ch) Returns a non zero value if
the character ch is a white
space character. E.g. tab,
space, etc

int isdigit(int ch) Returns a non zero value if
the character ch is a number

int isupper(int ch) Returns a non zero value if
the character ch is an upper
case letter

int islower(int ch) Returns a non zero value if
the character ch is a lower
case letter

int ispunct(int ch) Returns a non zero value if
the character ch is a
punctuation mark. E.g. ! or
?

int tolower(int ch) Returns the lower case
equivalent of the character
ch

int toupper(intch) Returns the upper case
equivalent of the character
ch

We will look at a brief example of using a few of these functions. So fire up wxDev-C++
and do the following:

Create a new C project
Name the project ‘MyStringThing’
Create a new folder called ‘MyStringThing’
Save your project there
Alter the generated source code to match the following

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <ctype.h>
4 #include <string.h>
5
6 int main(int argc, char *argv[])
7 {
8 /*Declare and initialise our variables*/
9 char FirstName[50] = "" ;
10 char SecondName[50] = "" ;
11 char FullName[110] = "" ;
12 int LoopIndex = 0;
13 int UpperCase = 0;
14 int LowerCase = 0;
15 int Punctuation = 0;
16
17 printf("Please enter your first name\n");
18 scanf("%s" ,FirstName);
19 printf("Please enter your family name\n");
20 scanf("%s" ,SecondName);
21
22 /*Copy FirstName into FullName*/
23 strcpy(FullName,FirstName);
24 /*Use strcat to add a space after first name*/
25 strcat(FullName, " ");
26 /*Use strcat to append the FamilyName*/
27 strcat(FullName,SecondName);

28
29 printf("\nYour full name is %s\n" ,FullName);
30 printf("Your first name is %d characters long\n" ,strlen(FirstName));
31
32 /*Loop through each letter in the string and keep a count of
33 upper and lower case letters plus punctuation marks */
34 for(LoopIndex = 0; LoopIndex < strlen(FullName); LoopIndex++)
35 {
36 if(islower(FullName[LoopIndex]))
37 LowerCase++;
38 else if (isupper(FullName[LoopIndex]))
39 UpperCase++;
40 if(ispunct(FullName[LoopIndex]))
41 Punctuation++;
42 }
43
44 printf("\nYour full name contains:\n");
45 printf("%-3d Lower case letters\n" ,LowerCase);
46 printf("%-3d Upper case letters\n" ,UpperCase);
47 printf("%-3d Punctuation mark" ,Punctuation);
48
49 /*use the shorthand if ?: to add an s to the end of the previous
50 output if punctuation equals anything other than 1* /
51 printf("%c\n\n" ,Punctuation == 1?' ':'s');
52
53 system("PAUSE");
54 return 0;
55 }

Compile and run the program.

You should receive an output resembling the following

Figure 3.6 – Output from the MyStringThing Program

Let us have our usual breakdown (of the program)

Line 3 - We include the new header file <ctype.h> this contains the character

handling functions.

Line 4 - We include the header file <string.h> this contains the string handling

functions.

Line 23 - We use the function strcpy to copy the contents of the string FirstName

into the string FullName.

Line 25 - We use the function strcat to add the string constant “ “ to the end of the

string FullName this gives us a space between the first name and the family
name.

Line 26 - We use the function strcat to add the contains of the string FamilyName to

the end of the string FullName.

Line 30 - We use the function strlen to output the length of the first name.

Line 34 - We start a for loop to look at the string character by character.

Line 36 - We use islower function to see if this character is lower case or not.

Line 38 - If this character was not lower case we use the isupper function to see if it

is uppercase or not.

Line 40 - We use the ispunct function to see if this character is punctuation of not.

Line 51 - We use the shorthand if operator ?: to output an s after punctuation mark if

we have higher or lower than 1 punctuation mark, this makes our program a
little more professional.

Now for something a little different, creating our own data types. We consider creating
datatypes that consist of several pieces of data in the next section Structures.

Structures

So far we have seen how to use arrays to group together items of data of the same kind.
But what about grouping together items of different kinds? To do this C provides
structures. There are many uses for structures. One of these is to overcome the limitation
that functions can only return one piece of data. By making that piece of data a structure
you can return many items at once. To create a structure we need to use the aptly named
keyword struct .

struct

You have already come across a structure when we looked at input/output with files. The
FILE data type is actually a structure. Besides the keyword struct we also need a name
to refer to the structure by and data members. An example of a structure follows below.

struct CarDetails
{

 int Age;
 char Model[30];
 char Registration[10];
};

After the keyword struct comes the name of the structure then inside the ‘{} ’ braces
are the structures members. If you are used to Pascal programming or databases then a
structure corresponds to a record and the members to a field.

We can use the structure as a data type the only caveat is that we need to use the word
struct in front of it. For example to use the above example we can write the following:

struct CarDetails MyCarDetails;

In the above example we create a new structure called MyCarDetails. But having created
the new structure how do we access the members? This is done using the dot ‘. ’
operator. For example:

MyCarDetails.Age = 10;
printf(“My car is %d years old\n” ,MyCarDetails.Age);

So far so simple. However if the structure is referred to via a pointer the method of
accessing its members alters. Now we need to use ‘-> ’ instead of ‘. ’. For example:

struct CarDetails ACarDetails;
struct CarDetails * MyCarDetails = &ACarDetails;
MyCarDetails->Age = 10;
printf(“My car is %d years old\n” ,MyCarDetails->Age);

It is also possible to use the dot ‘.’ operator with pointers using the following notation.

(*MyCarDetails).Age = 10;

Due to the order of precedence rules it is necessary to use the braces around
*MyCarDetails.

Although the structure has become like user defined data type it is not quite the same
since you have to use the keyword struct in front of the structure name when ever you
wish to create a new instance of it. However by making use of another C keyword
‘ typedef ’ we can over come this restriction.

typedef is used to assign another name to a data type for instance

typedef int MyInt;

This allows you to use MyInt as a data type. We can combine this with structures in the
following way.

typedef struct
{
 int Age;
 char Model[30];
 char Registration[10];
}CarDetails;

CarDetails MyCarDetails;

MyCarDetails.Age = 10;

This allows you to use the structure exactly as you would any other data type. Along with
the structure C provides a similar option called the union.

union

The union looks exactly like a structure the difference is that each member of a union
occupies the same area of memory therefore you can only use one member of a union at a
time. Therefore while a structure is the size of all its members combined, a union is the
size of its largest member. A union has several uses, one of which is to save memory
when you only need to operate on one member at a time. Using a union is in all other
respects like using a structure. An example follows:

typedef union
{
 int Age;
 char Model[30];
 char Registration[10];
}CarDetails;

CarDetails MyCarDetails;

MyCarDetails.Age = 10;

 If we hadn’t used typedef then we would have needed to place the name CarDetails
after the keyword union and have used the keyword union before CarDetails
MyCarDetails; .

NOTE: This restriction is removed in C++ therefore you can do the above in C++

without resorting to using typedef and your structure will work like any
other data type.

To give you some idea of structures and unions let us create a sample program. As usual

Create a new C project
Call it UnitedStructures
Save it in its own folder called ‘UnitedStructures’
Alter the generated source code to match the following.

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 typedef struct
5 {
6 int NumberOfCows;
7 int NumberOfSheep;
8 int NumberOfPigs;
9 }FarmYardStruct;
10
11 typedef union
12 {
13 int NumberOfCows;
14 int NumberOfSheep;
15 int NumberOfPigs;
16 }FarmYardUnion;
17
18 int main(int argc, char *argv[])
19 {
20 /*Create a structure*/
21 FarmYardStruct OldMacsFarm;
22 /*Create a union*/
23 FarmYardUnion YoungMacsFarm;
24
25 /*Fill the members of OldMacdonaldsFarm structure*/
26 OldMacsFarm.NumberOfCows = 12;
27 OldMacsFarm.NumberOfSheep = 54;
28 OldMacsFarm.NumberOfPigs = 6;
29
30 /*Fill the members of YoungMacdonaldsFarm union*/
31 YoungMacsFarm.NumberOfCows = 12;
32 YoungMacsFarm.NumberOfSheep = 54;
33 YoungMacsFarm.NumberOfPigs = 6;
34
35 /*Lets tell the world all about the Macdonalds*/
36 printf("Old Macdonald had a farm\n");
37 printf("On that farm he had %d cows\n" ,OldMacsFarm.NumberOfCows);
38 printf("and on that farm he had %d sheep\n" ,OldMacsFarm.NumberOfSheep);
39 printf("and on that farm he had %d pigs\n\n" ,OldMacsFarm.NumberOfPigs);
40
41 printf("Young Macdonald also had a farm\n");
42 printf("On that farm he had %d cows\n" ,YoungMacsFarm.NumberOfCows);
43 printf("and on that farm he had %d

 sheep\n" ,YoungMacsFarm.NumberOfSheep);
44 printf("and on that farm he had %d

 pigs\n\n" ,YoungMacsFarm.NumberOfPigs);
45
46 /*Print out the sizes of the structure compared to the union*/
47 printf("Sizeof Farmyard struct is %d\n" ,sizeof(FarmYardStruct));
48 printf("Sizeof Farmyard union is %d\n" ,sizeof(FarmYardUnion));
49
50 system("PAUSE");
51 return 0;
52 }

As usual compile and run the program. You should get something similar to the following
output.

Figure 3.7 – Output from UnitedStructures program

So why is there a difference between Old Macdonald’s farm and Young Macdonald’s
farm?

The difference is that the details of Young Macdonald’s farm are held in a union. As the
number of animals is written to each member it over writes the previous assigned value
since all the members share the same memory space.

This is proved by the output from lines 47 & 48. The size of the FarmYardStruct is 12 or
3 times the size of an integer. Whereas the size of the FarmYardUnion is 4 the size of a
single integer.

enum

While the enum does not strictly belong in a discussion about structures, it provides
another way to create your own data types and is declared in a similar way. An example
of an enum follows:

enum Monsters { Godzilla, KingKong, Predator, Alien , GeorgeClooney };

The above lists a set of integer constants. The first Godzilla is numbered 0 and each one
after that is one number higher. The tag Monster can now be used as a data type, e.g.

enum Monsters MyMonster;
MyMonster = Godzilla;

It is also possible to initialise the values of any or all of the sets members. E.g.

enum Monsters {Godzilla = 5, KingKong, Predator = 12, A lien};

In this instance Godzilla has the value of 5, KingKong since it is next in sequence has the
value of 6, Predator has the value of 12 and Alien has the value of 13.

Enumerations are of great use in switch statements where they can improve the human
readability of the code. For example:

switch (MyMonster)
{
 case Godzilla:
 printf(“Hey what a cool monster\n”);
 break;
 case KingKong:
 printf(“He’s not so scary\n”);
 break;
 case Predator:
 printf(“Now you’re talking\n”);
 break;
 case Alien:
 printf(“Now I am getting worried\n”);
 break;
 case GeorgeClooney:
 printf(“Agh, keep it away from me!\n”);
 break;
 default:
 printf(“No body is scared of the default mo nster\n”);
}

That brings us to the end of our discussion of structures and almost to the end of our
discussion on C programming, by now you are well and truly on your way to the ranks of
C programmers.

Summary

This concludes our very brief tutorial in C programming. We have considered the basic
data types, the most common keywords and some of the many functions available in the
standard libraries. This by no means covers the whole of C programming and if you have
come this far you may wish to go further. Part 4 of this book and particularly the
Resources section points the way to a few of the many web based resources available for
continuing your learning.

Now we shall continue with the enhancement to C, C++. This adds many features to C to
make it more suitable for the object oriented programming paradigm. To learn more
continue to the next chapter Basic C++ Programming.

Chapter 4 – Basic C++ Programming

Introduction

C++ began life as an enhancement to C. The name is derived from C’s increment
operator ‘++’ showing that C++ is the next progression of C. It was designed by Bjarne
Stroustrup while working at Bell Labs. Stroustrup wanted to make C more practical for
programming large applications. He was influenced by the features found in other
languages, particularly Object Orientation. (We will look at Object Orientation in the
section ‘Classes’). C++ improves upon C in two major ways. The first are the additions to
the language. C++ now has 62 keywords the extra ones implement new features some of
which have found their way back into C99. The second change is to the libraries. C++
introduces new Input/Output libraries, namespaces and most dramatically the STL
(Standard Template Libraries).

C++ is like C a growing language and there are different standards which have been
agreed upon and released. The first was in 1998 and the second in 2003 various features
available in the later standard such as the STL are unavailable in the 1998 standard. At
present a new standard C++0X is being drawn up.

C++ introduces the following features. Single line comments beginning with ‘//’. Name
spaces to create encapsulation. Classes to enable object oriented programming. Memory
allocation and retrieval with new/delete. Function and operator overloading. Exception
handling, templates and RTTI (RunTime Type Identification). There are many other
changes that we don’t have room for.

One of the most touted benefits of C++ is its backward compatibility with C. This is true
to a point. Most older C programs will compile without too much trouble with C++. One
problem is C++’s new keywords which may have been used as variable names or the like
in an old C program. Since the introduction of C99 the C language has also added new
keywords which don’t exist in C++ so that also breaks the compatibility.

We will continue now by looking at a basic C++ program that introduces some of the
new features found in C++.

Break down of a simple example

Like we did before in our introduction to C programming we will create a small example
in wxDev-C++ of a C++ program, compile it and see what it does. Then we will go on to
break it down and examine it in detail.

So start up wxDevC++ and create a new project. Select a ‘Console Application’ and
make sure the radio button for C++ Project is selected. Name the project ‘SimpleC++’.

Figure 4.1 – Project settings for new SimpleC++ application.

In the next dialog create a new folder called ‘SimpleC++’ and save the project there. The
IDE should now create the following basic source code for you.

1 #include <cstdlib>
2 #include <iostream>
3
4 using namespace std;
5
6 int main(int argc, char *argv[])
7 {
8 system("PAUSE");
9 return EXIT_SUCCESS;
10 }

Now change this to the following

1 #include <cstdlib>
2 #include <iostream>
3
4 using namespace std;
5
6 const int TOP_MAN = 2;
7 const int THE_PRISONER = 6;
8
9 int main(int argc, char *argv[])
10 {
11 cout << "Who are you?" << endl;
12 cout << "I am the new number " << TOP_MAN;
13 cout << ", You are number " << THE_PRISONER << endl << endl;
14 //Just a comment to show off C++'s single line comm ent style
15 for(int i = 0; i < THE_PRISONER; i++)
16 {
17 cout << "Thinking...\n" << endl;
18 }
19

20 cout << "I am not a number, I am a free man!" << endl;
21
22 system("PAUSE");
23 return EXIT_SUCCESS;
24 }

Once you have done this press <F9> to compile and run. The output should be exactly the
same as for the ‘SimpleC’ program in the last chapter. Let us now break down the code to
see the differences in the way that C++ achieves this compared to C.

Lines 1 and 2 should look fairly familiar they include the libraries we need to use. The
first difference you may notice is that the included files don’t end in a ‘.h’. I am not quite
sure why this is but I suspect that it is due to the fact that before the standards were drawn
up several compilers created their own versions of libraries that later became standard.
Thus there are deprecated headers called ‘iostream.h’ and so on.

Line 4 introduces two of C++’s new keywords using namespace . Namespaces
provide a way to create functions with the same names and parameters and use them in
the same program. <More here about namespaces>

Lines 6 and 7 show an alternative to preprocessor defines. These lines use the keyword
const which means the value of the variable cannot change. Unlike defines constants
have to have a type like int or float , etc.

Line 11 introduces us to the new C++ output function cout . cout uses << , something
about std::cout and std::endl more in input/output functions.

Line 14 comment

Line 15 declaration of int in the for loop not allowed in C.

Line 17 shows that escape characters such as ‘\n’ still work along with endl;

Basic C++
C++ (structs changed, bool data type only takes two values true and false)

Functions

C++ makes a few alterations to the good old function. Once you have got used to these
you will wonder how we managed without them for so long.

Predefined values

Remember back in the last chapter we spoke of functions which took variable length
arguments? Well C++ has added to this by allowing you to create functions that have
default values pre-filled.

This is achieved by filling in the values in the function prototype. For example

int MyFunction(int AnInteger, float AFloat = 5.4 , double ADouble = 43.7);

You don’t need to define all the values, but once you have defined one you need to define
all the others that follow it. Now you can use this function like MyFunction(2); or
MyFunction(2,5.3,64); The first usage would automatically fill in the the values
for aFloat and ADouble as 5.4 and 43.7 respectively.

Passing by reference

Before when we looked at function in C we mentioned using data types as arguments to a
function. For example:

int MyExampleFunction(int AnInt, int AnotherInt);

The problem with using this type of function is that a copy of the variable you pass to the
function is made in the computers memory. This takes time and memory. If you are
repeatedly using the same function or using a large user defined data structure this can
create an unacceptable level of overhead.

The answer to this problem in C is to use pointers. For example:

int MyExampleFunction(int * AnInt, int * AnotherInt);

However the problem with this is that pointers are inherently dangerous and their usage is
recommended to be as limited as possible. C++ provides a new feature which gives you
the best of both worlds. This is called passing by reference. To use this function you use
the ‘&’ operator before the argument names. For example:

int MyExampleFunction(int & AnInt, int & AnotherInt);

You would call this function just as you would call any other function. For example:

ReturnValue = MyExampleFunction(FirstInt, SecondIn t);

Unlike using pointers you don’t need to include a ‘&’ before FirstInt and SecondInt. But
the variables are acted on directly rather than on copies.

Inline

Sometimes you may have a function that is going to be called thousands of times in your
program. This is going to create a bottleneck in the program. However the computer has
various tricks up its sleeve to speed up execution of various parts of your program.
Adding the keyword inline before the function indicates to the compiler that you want
this function to be optimised. For example:

inline int MyExampleFunction(int AnInt, int AnotherInt);

The compiler then tries to do its best to comply. However there is no guarantee that the
function will be optimised. The only guarantee is that the compiler will try.

Overloading

For me this is the best addition to functions. Sometimes you will write two or more
functions that do almost exactly the same thing, but take different arguments. For an
example consider the case where you have three functions which return the sum of their
arguments. The first takes two ints, the second two floats and the third two doubles. The
question is what to name these functions. In C you can’t have two functions with the
same name so you may end up with:

int SumInt(int AnInt, int AnotherInt);
float SumFloat(float Afloat, float AnotherFloat);
double SumDouble(double ADouble, double AnotherDouble);

How much simpler if you could simply call the function Sum and then pass in any of the
three arguments. Well with C++ you can. For example:

int Sum(int AnInt, int AnotherInt);
float Sum(float Afloat, float AnotherFloat);
double Sum(double ADouble, double AnotherDouble);

This makes for much neater solutions (it also saves us lazy programmers from wearing
our brains out thinking up new function names). There are not many rules for creating
overloaded functions. The rules are:

1. The function must differ on more than just the return type. This is not allowed:

int Sum(int AnInt, int AnotherInt);
float Sum (int AnInt, int AnotherInt);

The reason for this is the compiler would not be able to tell which function you intended
to call.

2. The arguments must not be ambiguous. This is not allowed:

int Sum(int AnInt, int AnotherInt);
int Sum(int AntInt, int AnotherInt, int OneMoreInt = 40);

The reason is that the compiler would not know whether the line ReturnValue =
Sum(4, 6); was supposed to call the first function with two arguments, or the
second function with the third argument as the default value.

3. You have to send the author of this book $20 every time you use an overloaded
function. (Okay I lied on the last one, but feel free to do as you wish).

So as you can see there have been some great improvements in the area of functions.

Memory allocation

I’m sure you will remember back in the last chapter we touched on memory allocation.
To achieve this in C we needed to make use of various functions alloc , malloc , etc.
C++ takes a different approach and provides two new keywords new and delete to
enable you to manage allocating and de-allocating memory.

Allocating memory

Instead of malloc we have the keyword new, this returns a pointer to a memory address
where the new block of memory resides.

De-allocating memory

Once you have finished with the memory you are using you need to tell the computer that
you don’t need it anymore. This is done in C with the function free . In C++ we gain the
keyword delete . For instance to free the two blocks of memory allocated in the
previous section we would use delete in this way.

WARNING: It is important not to mix C and C++ memory management functions. For
example don’t write.

MyClass * AClass = new MyClass();
Free(AClass);

If you use new then delete the memory with delete . If you use malloc or alloc
then delete the memory with free .

Classes

Classes are an essential part of object oriented programming. Basically OOP is all about
creating models of real life objects and using these within your program. For instance if
you were creating a program that imitated a lighting system, you might want to create a
light model, a switch model, maybe a timer model or light sensor model. These models
are called objects.

So what does an object consist of? It consists of data, things the object ‘knows’ or
attributes of the model, it also consists of methods, the way an object acts or what it can
do. For example a child model may have the data HairColour, EyeColour, Age, Height

and Weight. In addition it can do things like walk, talk, eat and sleep. Obviously this is a
very basic model of a child.

One advantage of using objects is a thing known as encapsulation. All the data and
methods relating to an object is contained within it. It is possible to arrange things that
only the object can access or alter its data. Looking again at the child example, you might
arrange for a method called Birthday to increment the child’s age by one. It would not
make sense for the age to be incremented by any object other than the child.

There are other benefits such as inheritance which we will discuss later.
Basic Classes

So what does an object in C++ look like? For a start objects in C++ are called classes. We
will start with a very simple example based on our child model.

class Child
{
 public:
 string HairColour;
 string EyeColour;
 int Age;
 int Height;
 int Width;
};

If you are thinking “Hey! that looks just like a struct”, then you would be correct. At this
point there are two differences the first is the use of the keyword class instead of struct.
The second is that keyword public:. There are three such keywords public:, protected: and
private:. At this point we will consider the first and last of these, leaving protected: to our
discussion of inheritance later on.

The keyword public: means that all data and methods that follow this can be accessed by
other objects or from within your program. The keyword private: means that only the
class can access this data or methods. Before continuing I had better start using some of
the correct terminology. The data and methods contained in the class are called members,
therefore the class has member data and member functions (or methods). To illustrate the
difference between the public: and private: keywords let us consider how to access the
member data in a class. First we need to create an instance of our class, then we can
access its members. This is similar to using a struct.

Child MyChild;
MyChild.Age = 5;

This would work with the above class and a program using the above code would
compile ok. However if we now change the class declaration to

class Child
{
 string HairColour;
 string EyeColour;
 int Age;
 int Height;
 int Width;
};

If you tried using this with the above code you would get a compile time error, why? By
default all members are private so the above class is equivalent to

class Child
{
 private:
 string HairColour;
 string EyeColour;
 int Age;
 int Height;
 int Width;
};

So trying to use MyChild.Age = 5; is an error because only the class can access the
member data Age, not external code which is what we are trying to use.

Inheritance
Friends
Polymorphism
Typecasting
Type identification
Input/Output

In C we saw that everything is regarded as a file. C++ takes a different approach to input
and output and regards everything as a stream. Using the power of classes an abstract
stream class is defined and all input/output streams are derived from it. This means that
they all share a common interface. The best news is that they are 100% easier to use than
C’s printf/scanf functions.

Input
Output
Strings
Namespaces

Exceptions

Templates Chapter 5 – Finding your way around the I DE
To be written

Chapter 6 – Debugging with wxDev-C++
Some time ago I read an article that provided the mathematical proof that every computer
program contains bugs. Back then I was still fairly idealistic about programming and I
thought surely not. Now I agree, all but the most trivial programs contain bugs. Even the
operating system you are using to run the program to read this contains bugs.

I’m not going to go into the history of why bugs are called bugs. I’ll leave that as
homework. Instead I will go into the genus of bugs. There are three main types. Some
will cause your program to fail during the compile phase. Some will cause it to fail during
the link phase and some will show up when the program runs.

These bugs come in roughly three categories critical, medium and low. Critical bugs are
those that cause your program to wipe all the data from your user’s hard drives. Medium
bugs are those that crash the program occasionally. Low bugs are those that may irritate
users but cause no real problems, like a text control that is one pixel lower than the
others.

In any professional application far more time is spent fixing bugs than any other area of
program development. One thing that all bugs have in common is that they can be hard to
trace, especially for those that only show up at runtime. The purpose of this chapter is to
show you some ways for tracking down and squashing those bugs. We will especially
look at the tools provided by wxDev-C++.

Compile Time Bugs

Link Time Errors

Run Time Errors

DevC++ Related FAQs

Q. What is this I hear about an Easter egg in Dev-C++?

A. One of the original developers created an Easter egg in version 4 of Dev-C++.

This has survived in a slightly different form in the latest version and in wxDev-
C++. To access the Easter egg in the latest version

Start Dev-C++ (or wxDev-C++).
Open the about box, accessed via Help|About Dev-C++…
Click on the picture at the top of the dialog and drag it down over the
‘Authors’ button.
A fish will appear moving across the dialog.
Depending on your speed and the speed of your computer you can try
clicking on the fish. If you manage the fish will change direction.

Q. Why is my program not recompiled when one of the header files is altered?

A. Normally if a source file is changed the compiler will pick this up and recompile

the project. This is caused by setting the option in ‘Use fast but imperfect
dependency generation’ in Tools|Compiler Options. This speeds up compilation
of the project by missing out some steps, but causes changes in the header files to
be missed.

The long term solution is to uncheck this option. If changes to header files are rare
you can choose to recompile the whole project this will include the changed
header files.

Figure x.x – Use fast but imperfect dependency generation

Part 2

Basic Development with

wxWidgets and wxDev-C++

Chapter 7 – Creating a Basic HTML Editor

Introduction

So far we have covered C and C++ programming using just the DevC++ features of the
IDE. But the features added by Guru Kathiresan and the other wxDev-C++ developers
have created a RAD (Rapid Application Design) application of great power.

Part 2 takes you through using wxDev-C++ to develop programmes and introduces you
to the various aspects of using it to design your own programs that look and act as you
wish. In this chapter we will begin by designing a small HTML editor. This is nothing
fancy, there is no syntax colouring and the like. What we will create is a programme with
a basic menu, status bar, and the ability to save and load files. The special feature of this
program is that it has two resizable windows. The bottom window is where you type html
formatted text, the top window will update dynamically to show what this would look
like in a web browser.

So let us start.

Starting a wxWidgets Project

We already know how to start a new project, so use your favourite method.

 From the ‘New Project’ dialog, choose ‘wxWidgets Frame’.
 Make sure that the ‘C++ Project’ radio button is selected
 Enter ‘HTMLEditor’ as the project name.

Figure 7.1 – Project settings for HTML editor

 Create a new folder called 'HTMLEditor within your ‘Projects’ folder.

You will be greeted with the unfamiliar ‘Create New Project’ dialog. For now alter the
settings as follows, except you can put your own name where it says ‘Sof.T’.

 Then click on the [Create] button.

Figure 7.2 – Create New Project dialog

The IDE will flicker for a bit as various pages open, and finally the form designer will
open. The IDE will look like this:

Figure 7.3 – The IDE showing the form designer

The following section will show you how to use this to create your killer application.

Using the Form Designer

In the centre is a dark grey window. This is the visual representation of your application.
To the right of this is the palette showing the different components you can use. To the
left is the property editor which you can use to change various aspects of your form. Just
above this is a combo box which drops down to show all the components your application
uses and allows you to quickly choose between them.

We will start by placing the components we need for our program. The total list will be a
menu bar, status bar, splitter window, text control, and html control. So let us start by
adding these. First will be the menu bar. What do you mean you can’t see a menu bar?

If you look at the component palette on the right, you will see that it has a scrollbar on its
right hand side., Using the scrollbar, many more controls become visible and you need
to scroll down to locate them. Alternatively go to the combo box where it says ‘All’ and
use this to reduce the number of components offered. Using either of these methods:

 Find and select ‘Menu’.

There, that is better. Now click on the menu bar component. This will now be highlighted
in blue.

Figure 7.4 – Selecting a menu component

 Click on the dark grey form in the centre of the designer.

You will notice two things: the first is that a small box with the picture of the menu bar
has appeared on the form with 8 little squares around it. The other thing is that the
‘Menubar’ item on the component palette is no longer highlighted blue. The small box is
a visual holder for the menu bar. Several components show up like this and it is nothing
to worry about; it is quite normal and has nothing to do with the physical positioning of
the component.

We will proceed by placing the other components we need onto the designer window.
Next is the status bar. You will find this under ‘Controls’ and you may need to scroll
down as it is near the bottom.

 Click on 'status bar', and when it is highlighted, click on the form.

You will notice that this time it has automatically jumped to the right place on the bottom
of the screen.

Now we want a splitter window. This can be found on the palette under ‘Window’.

 Find and select 'splitter window' and then click on the form.

The splitter window will automatically fill the form. Now we want a html window. This
is on the same palette so:

 Select 'HTML window' and drop it onto the splitter window.

You may find the form suddenly shrinks and scrollbars appear on the right and bottom
sides, don’t worry as this is a design feature. Finally we want a text control, which is
found under controls. What we want is called ‘Memo’. This is actually just a text control
with multiple lines, the name is a part of wxDev-C++’s Delphi heritage.

 Select the ‘Memo’ component and drop it onto the form.

It will automatically find its way under the html window.

Figure 7.5 – The completed form in the design window

Now for the moment of truth.

 Press <F9> to compile and run the application.

You will notice that the compiled application looks somewhat like the design form. The
text has disappeared from the html window but not from the text control. Also notice that
although we dropped a menu bar on the form nothing shows up on the compiled
application.

Figure 7.6 – The compiled application.

In the next section we will look at configuring the form in the designer to make it more
like a real working application.

Altering Properties

If the application is still running, close it, just like any other windows application, by
clicking on the red close button on the caption bar. Now we can start to configure our
components in the form designer.

First we will correct that text control. In the form designer:

 Select the text control by clicking on it.

You can tell if it is selected because the eight little boxes will appear on the sides and
corners (the bottom ones may be hidden by the status bar). These boxes are called
handles. You will note that when you select a component the text changes in the combo
box above the property editor. This text gives you the component name followed by the
component type. E.g. when the text control is selected it changes to
WxMemo1:wxTextCtrl. WxMemo1 is the controls name and wxTextCtrl is its type. The
contents of the property editor also change as different components are selected, to reflect
the properties each component contains.

So having selected the text control the property editor should look like this.

Figure 7.7 – The property editor for the text control

First let us get rid of that text that shows up in the control. If we look at the property
editor the first column contains the property names; these are in black and can’t be
altered. The second column with the blue writing contains the values for these properties
and can be adjusted. At first it isn’t easy to see what alters this. The property we need is
under ‘Strings’. If you

 Click in the second column, next to ‘Strings’ where it says ‘Edit Strings’

a small button with three periods in it will appear.

 Click on this [...] button to activate the text editing dialog.

Figure 7.8 – The string editor

Any text shown in this editor will appear in the text control.

 Delete all of the text control contents.
 Press the [Ok] button.

You will notice that the text has disappeared from the text control in the form designer. If
you want to check that it has also disappeared from the compiled application, you can
compile and run it again.

Now let us sort that menu bar out. Why didn’t it show up? The reason for this is that it
doesn’t contain anything yet. To correct this:

 Select the menu bar by clicking on the small square that represents it.

This time the property editor only shows five items. The one we want is called ‘Menu
Items’, just like the ‘Strings’ property in the text control clicking next to this produces a
button with three periods in it.

 Click on the [...] button to activate the following dialog.

Figure 7.9 – The menu bar editor

 Click the [Add Item] button.

Suddenly the dialog fills with all sorts of information that is generated for you. The box
labeled ‘Caption’ now contains the value ‘MenuItem1’;

 replace 'MenuItem1' with ‘&File’ and press <Enter>.

The text now changes on the Menu Items box and the ID Name also changes.

 Click on the [Apply] button.

 (The reason for using ‘&’ in the menu item names is to do with mnemonics and will be
explained later in Chapter 12 under ‘Mnemonics and Keyboard Accelerators’).

Now we have created our File menu we want to add some items to it. To do this:

 Click on the[Create Submenu] button.

This produces a menu item under the File menu and inset a little to show it is a child of
the File menu.

 Change the caption to ‘&Open\tCtrl+O’ and press <Enter>.
 Click on the [Apply] button.

Repeat this procedure this time changing the caption to ‘&Save\tCtrl+S’.

(The reason for using ‘\tCtrl+O’ in the menu names is to do with keyboard accelerators
and will also be explained in Chapter 12 under ‘Mnemonics and Keyboard
Accelerators’).

Now we want to add a separator to the menu.

 Click on the [Create Submenu] button.

This time in the top combo box labeled ‘Type’:

 Select ‘Separator’.
 Click on the [Apply] button.

Finally we want to add an exit entry to the menu. For the last time:

 Click on the [Create Submenu] button.
 Alter the caption to read ‘E&xit’.
 Finally click on the [OK] button.

WARNING: If at anytime you are creating a menu bar you click the [Cancel] button, all

the work you have done up to this point will be lost. This can be extremely
irritating when you have created a large complex menu system. If you
have made a mistake it is better to continue. Click on the [OK] to save the
work you have done so far, then reopen the menu bar dialog to make
changes.

To see the result of all our altering of properties:

 Press <F9> to compile and run.

You will notice that we now have a menu bar. Click on File and you will see the newly
created menu drop down. It doesn’t do anything yet, but it will by the end of the next
section.

Figure 7.10 – Our new menu bar

Before we start coding we need to add two more components.

 Change the component palette to ‘Dialogs’.
 Select and drop an OpenFileDialog and a SaveFileDialog on to the form.

After adding them to the form:

 Select each in turn and alter the Property ‘Extensions’ from ‘*.*’ to ‘*.htm’.

Now we can move on to the next part ‘Adding Code’ and actually get this to do
something.

Adding Code

GUI programming relies on what is called ‘Event based’ programming. Basically once
the program starts it just sits there in a loop, waiting for an event to take place. When an
event does take place it looks to see what, if any, code it should execute in response.
Events can be anything from starting a programme, to clicking within the programme
window with a mouse, resizing the window or leaving it to interact with a different
programme.

So to get our programme to do anything, we have to decide what events to respond to,
and what to do in response. We will start with an easy one. At present our menu does
nothing. Lets change that and make our programme close when we click ‘Exit’ in the file
menu.

To do that:

 Select the menu bar component.
Click on the [Edit MenuItems] button.

If the menu tree on the left hand side looks like this. Then click on the ‘+’ sign next to it
to show all the menu entries.

Figure 7.11 – Click the ‘+’ sign to expand the menu tree

 Select the ‘E&xit’ entry.
 Click on the [Edit] button on the bottom of the dialog.

Now on the right of the dialog near the bottom look for the combo box labeled
‘OnMenu’. This control holds the menu event that occurs when we click ‘Exit’ on the
menu.

 Click on the [Create] button (next to the combo box) .

The following dialog will pop up.

 Click on the [OK] button.

Figure 7.12 – The create new function dialog

 Click the [Apply] button
 Click the [OK] button.

If the designer does not take you directly to the new function then click on the tab labeled
‘(*)HTMLEditorFrm.cpp’ (in the editor window). The page should open with the cursor
in the body of a function as illustrated below.

94 /*

95 * Mnuexit1018Click
96 */
97 void HTMLEditorFrm::Mnuexit1018Click(wxCommandEvent& ev ent)
98 {
99 // insert your code here
100 }

Under the line

 // insert your code here

add the line

 Destroy();

The Destroy function will cause the application to close.

 Press <F9> to compile and run.
 Go to File|Exit to see that the code we added works.

Ensure the form designer has focus by clicking on the tab labelled
‘HTMLEditorFrm.wxform’ in the editor window.

We now want to add the functionality that creates the text editor part. Although not the
best way to do this, we will update the HTML window every time the user alters or
updates the contents of the text control. So it is an event within the text control we want
to act upon.

 Select the text control.

If you look at the property editor you will see another tab called ‘Events’ nestling behind
it.

 Click on the 'Events' tab to discover what events the text control can respond to.

You should see something like the following. Remember we want to act when the user
updates the text control. So I guess the event ‘OnUpdated’ is the one for us.

Figure 7.13 – The event editor

To create a new function to respond to this event,

 Click in the empty cell in the right hand column.

A drop down list box should appear listing all the functions wxDev-C++ has created for
us already. We don’t want to use any of these so:

 Select the top option <Create New Function>.

Figure 7.14 – List of available functions in the event editor

You should be taken automatically to the new function, but if not, click on the tab labeled
‘(*)HTMLEditorFrm.cpp’. There you will see a new function similar to the following.

105 /*

106 * WxMemo1Updated
107 */
108 void HTMLEditorFrm::WxMemo1Updated(wxCommandEvent& even t)
109 {
110 // insert your code here
111 }

wxDev-C++ has kindly created the function skeleton for us, but what are we going to add
inside it. This time I am not going to tell you straight out. I want you to learn to make use
of one of wxDev-C++’s greatest provisions, the wxWidgets help file. So in the IDE go to:

 Help|wxWidgets
 Or just press F1.

The help file should appear:

Figure 7.15 – The wxWidgets file help, this should be your greatest friend

Our objective is to alter the contents of the HTML window based on the contents of the
text control. So let us first find out how to alter the HTML window. Under the 'Contents'
tab on the left hand panel of the help screen, expand the option ‘Alphabetical class
reference’ by clicking on the ‘+’ next to it. A long list of components all beginning with
‘wx’ will be displayed. How do we know what one to look for? Well at a rough guess let
us scroll down to wxHtml. There are several entries beginning with this, but look closely

and there, near the end, is our one, ‘wxHtmlWindow’. Click on the entry
‘wxHtmlWindow’ and read the text that fills the right hand pane.

Figure 7.16 – Looking through the description of the wxHtmlWindow

As we read through the description of this control we reach the sentence which says,
“Once the window is created you can set its content by calling SetPage(text),
LoadPage(filename) or LoadFile.”. Now to me the last two options tell me that they open
files, whereas the first one ‘SetPage(text)’, says that we can set the contents of the HTML
window by calling this function with some text. To confirm this click on the link
SetPage(text) and read more about it.

So now we can add SetPage(text) into our new function. First we need the name of the
control we are working with. To get this go to the form designer and hover over the
HTML control. A pop up should appear saying ‘WxHtmlWindow1:wxHtmlWindow’.
Remember the bit before the colon is the component name. So go back to our function
and under the line:

 // insert your code here

add the code

 WxHtmlWindow1

WxHtmlWindow1 is a pointer to an instance of HtmlWindow, so we need to add ->
finally add the new function we found in the help file

 SetPage() .

The completed command should look like:

 WxHtmlWindow1->SetPage()

So far so good, but we now need some text as an argument to the function.

We want to get the text from the text control to pass to the HtmlWindow. Try scrolling
down the list and look for ‘wxMemo’. Having trouble? Remember what I said earlier
about ‘Memo’ being a hangover from Delphi? To find what to look for, try the trick of
hovering over the component on the editor.

Figure 7.17 – Discovering the name and type of a control

The format is <Control Name>:<Control Type>, so the section after the colon is the
information we want. Look in the help file for ‘wxTextCtrl’. When you click on
wxTextCtrl there is very little information given to you. Expand the left hand tree list of
contents, by clicking on the ‘+’ sign next to wxTextCtrl. Now you can see all the
functions contained in the component. Look down the list for suitable candidates. We are
looking for something most likely starting with get. Since there is no ‘GetText’ or
anything like it, the nearest appears to be ‘GetValue’. Click on this and read about it to
make sure. The first line should convince you. ‘Gets the contents of the control.’

To add this to our function, inside the braces ‘() ’of ‘ SetPage ’, add the name of the
text control, and remembering it is a pointer, add the new function we found. You should
end up with this code.

108 /*
109 * WxMemo1Updated
110 */
111 void HTMLEditorFrm::WxMemo1Updated(wxCommandEvent& even t)
112 {
113 // insert your code here
114 WxHtmlWindow1->SetPage(WxMemo1->GetValue());
115 }

So let us carry on coding. What do you mean you want to see what this has done. Very
well, let us compile and run it first.

 Press <F9>.

If you don’t know about HTML tags then enter the following: ‘<h1>wxWidgets are
great</h1>the designers of wxDev-C++ are <u>GREAT</u> too!’ . You may
want to expand the window to see the full effect. Or if you have downloaded the sample
code to accompany the book there is a file called ‘sample.htm’ included for you to open.
You will need to maximize the window to see the result.

Now can we carry on? We have two more functions to create. One to load HTML files
and one to save HTML files. In preparation for this we created two menu entries called
“Load” and “Save”. The actual work will be carried out by the Open/Save File Dialogs
we dropped on the form earlier. We will create the functions we need as we did for the
“E&xit” menu entry.

 Open the menu dialog editor by selecting the component that represents the menu
bar.
 Click on the ‘Edit MenuItems’ cell.
 Expand the tree list of menu entries.
 Select the entry “&Open”.
 Click on the [Edit] button.
Next to the ‘OnMenu’ combo box, click on the [Create] button.

On the dialog that pops up

 Choose the [OK] button,
 Click on the [Apply] button.

Repeat the same routine for the “&Save menu” entry.

When you have completed this

Click the [OK] button.

The following code should have been generated for you.

116 /*
117 * Mnuopen1015Click
118 */
119 void HTMLEditorFrm::Mnuopen1015Click(wxCommandEvent& ev ent)
120 {
121 // insert your code here
122 }
123
124 /*
125 * Mnusave1016Click
126 */
127 void HTMLEditorFrm::Mnusave1016Click(wxCommandEvent& ev ent)
128 {
129 // insert your code here
130 }

Alter these functions to look like the following. I will explain more about this code in
Chapter 9 in the section titled “Dialogs”. But I would recommend opening the
wxWidgets help and looking at the components and functions used in the following code
to understand how they work.

116 /*
117 * Mnuopen1015Click
118 */
119 void HTMLEditorFrm::Mnuopen1015Click(wxCommandEvent& ev ent)
120 {
121 // insert your code here
122 if(WxOpenFileDialog1->ShowModal())
123 {
124 WxMemo1->LoadFile(WxOpenFileDialog1->Ge tPath());
125 }
126 }
127
128 /*
129 * Mnusave1016Click
130 */
131 void HTMLEditorFrm::Mnusave1016Click(wxCommandEvent& ev ent)
132 {
133 // insert your code here
134 if(WxSaveFileDialog1->ShowModal())
135 {
136 WxMemo1->SaveFile(WxSaveFileDialog1- >GetPath());
137 }
138 }

That is it for this programme, so press <F9> to compile and run. Try loading and saving
‘*.htm’ files. Alter the text in the lower text control and see how this is reflected in the
upper HTML control.

By now I hope you are impressed by what wxDev-C++ and wxWidgets can do for you.
The amount of code you have written is comparable to the C and C++ samples and they
did very little. This program achieves so much more, with no more effort.

You may wish to extend this programme to have a toolbar, or buttons to insert various
HTML tags, or other amazing features. If you do want to, then go ahead. If you need to
know more about how to achieve this, then read on.

Chapter 8 – Working With Forms and Dialogs
To be written

Chapter 9 – The Component Palette

Sizers
The components that raises the most questions are the sizers. They have no counterpart in
traditional windows programming

Controls
Text Controls
Buttons
Choices
The Rest

Window

Toolbar

Menu

Dialogs

System

Advanced Users

WARNING: You are advised to back up any files before altering them, then you can go

back and replace them if anything goes wrong.

I personally find the component palette to be a little awkward to work with. Either you
have to show all files and scroll up and down looking for the ones you want or you have
make a guess at which section houses which component. Wouldn’t it be nice it you could
decide what goes where, or have your own sections with your most used components?
Well the good news is that you can.

To do this you need to use notepad. Open it then select File|Open. In the Open File dialog
make sure the combo box labeled ‘File of Type’ is changed to read ‘All Files’. Now
browse to where you installed wxDev-C++. The file you are looking for is called
‘devcpp.palette’.

Figure ?.? – Opening devcpp.palette

You will be greeted by the contents of a file like this:

[Palette]
Sizers=TWxBoxSizer;TWxStaticBoxSizer;TWxGridSizer;T WxFlexGridSizer;
Controls=TWxStaticText;TWxButton;TWxBitmapButton;TW xToggleButton;TWxEdit;TWxMemo
;TWxCheckBox;TWxChoice;TWxRadioButton;TWxComboBox;T WxListBox;TWXListCtrl;TWxTree
Ctrl;TWxGauge;TWxScrollBar;TWxSpinButton;TWxstaticb ox;TWxRadioBox;TWxDatePickerC
trl;TWxSlider;TWxStaticLine;TWxStaticBitmap;TWxStat usBar;TWxChecklistbox;TWxSpin
Ctrl;
Window=TWxPanel;TWxNoteBook;TWxNoteBookPage;TWxGrid ;TWxScrolledWindow;TWxHtmlWin
dow;TWxSplitterWindow;
Toolbar=TWxToolBar;TWxToolButton;TWxSeparator;TWxEd it;TWxCheckBox;TWxRadioButton
;TWxComboBox;TWxSpinCtrl;
Menu=TWxMenuBar;TWxPopupMenu;
Dialogs=TWxOpenFileDialog;TWxSaveFileDialog;TWxProg ressDialog;TWxColourDialog;TW
xDirDialog;TWxFindReplaceDialog;TWxFontDialog;TWxPa geSetupDialog;TWxPrintDialog;
TWxMessageDialog;
System=TWxTimer;
[Version]
IniVersion=1

Each line contains one section on the palette. The start of the line before the ‘=’ sign is
the section name. The rest of the line is the list of components in that section. Notice that

each component is separated by a semi colon. The other thing to note is that each
component name begins with a capital ‘T’.

To create a new section think up a name. Add this to the file by putting a new line in
between ‘System’ and ‘[Version]’. Follow your name with an equals ‘=’ sign. Then add
the components you want in your section copy the names from those already in the file
and separate each with a semi colon. Also end the line with a semi colon. For example

Favourites=TWxBoxSizer;TWxPanel;TWxEdit;TWxMemo;TWx MenuBar;TWxToolBar;TWxToolBut
ton;TWxStatusBar;

Save the file and then restart wxDev-C++ you should find your new section in the
component palette.

Chapter 10 – Linking It With Events

Chapter 11 – Making It Work With Code
Where to add your code (or where did it go)

Chapter 12 – Guidelines for Professional Looking Pr ograms

Mnemonics and Keyboard Accelerators

Mnemonics

Mnemonics are letters in a menu or on certain controls that are underlined. They allow
the user to hold down the ALT key and press the underlined letter on the keyboard to
simulate clicking on that menu entry or control. This works on unix and Windows
platforms, at present this is not implemented on Macintosh platforms.

We saw an example of using mnemonics when building our first wxWidgets program.
We used them while building the menu. Do you remember those using ‘&’ in the
captions. The letter that the ‘&’ proceeds is used as the mnemonic. Often this will be the
first letter of the menu entry, but as mnemonics need to be unique sometimes the first
letter is unavailable in which case other letters with a strong association, e.g. ‘E&xit’. Try
to avoid letters that descend as the underline can be hidden by these. E.g. ‘g’,’p’,’j’.
Avoid narrow character such as ‘i’.

Some of these mnemonics are conventions, for example ‘E&xit’, ‘&File’, ‘Cu&t’ and so
on. If you are unsure what to use, try looking at other well known programs and see what
they use. Other than that some general rules to help you are. Try to use the first or second
letter in a word. E.g. ‘&File’, ‘&Help’. Try to use a distinctive constant. E.g. ‘E&xit’.

Generally Mnemonics are used on all controls that can contain text captions and can be
clicked upon. Common exceptions are OK and Cancel buttons which should be mapped
to ENTER and DELETE.

Keyboard Accelerators

Keyboard Accelerators are keys or key combinations that the user can press to activate
certain functions. We have already come across these in wxDev-C++ itself. For example
when we press <F9> to compile and run, F9 is a keyboard accelerator. Again we used
them in our first wxWidgets program. This was the part after the menu name that began
with ‘\t’ everything after the ‘\t’ was the keyboard accelerator.

Once again keyboard accelerators follow conventions, a table with a few of these follows.
Once again if in doubt check other professional programs and see what they have used.

New Ctrl+N Redo Shift + Ctrl + Z Find Ctrl+F
Open Ctrl+O Cut Ctrl+X Select All Ctrl+A
Save Ctrl+S Copy Ctrl+C Search Again F3
Print Ctrl+P Paste Ctrl+V Goto Line Ctrl+G
Undo Ctrl + Z Delete Del Help F1

You may think that all this mnemonic and keyboard accelerator nonsense is just useless
bells and whistles for a program. If so just wait until the day the mouse attached to your
computer stops working. That is the day you will thanks someone for spending the time
to make sure that you can operate your computer using only the keyboard.

Basic wxDev-C++ Related FAQs

Q. Why does my program look different when I compile it?

A. If the differences are confined to the placement of controls, size of controls or

other minor differences then there are two reasons.
The first is that wxDev-C++ is written using Delphi not wxWidgets, therefore the
look of the controls may not correspond exactly.
The second reason is that wxDev-C++ is a work in hand. Features are still being
added and improved, at some later date these differences may be worked on and
corrected. If it is a big problem you can file a bug report at sourceforge to alert the
developers.
If the problem is that your program doesn’t look like an XP program read the next
FAQ

Q. Why does my program not look like a Windows XP program when I compile

it?

A. If your program looks like a Windows XP program in the visual designer but
when you compile and run it, it looks like a Windows 9x program then the cure is
simple.
In wxDev-C++ go to the menu Project|Project Options or press [Alt] + [P] to
bring up the following dialog.

Figure ?.? – The Project Options dialog

The tab you want is the one that is already open and just above the buttons is a
check box titled ‘Support Windows XP Themes’, check this. Click on [OK] then
press <F9> to recompile and run. You should have a shiny new XP themed
program.

Q. wxDev-C++ keeps crashing what’s wrong, what can I do?

A. Since wxDev-C++ is pretty stable it is a work in hand and will contain bugs and at

times those bugs will crash the IDE. Sometimes it is a problem in wxDev-C++’s
code and sometimes it will be due to the configuration of your computer. So what
can you do about it?

Firstly don’t write to the developers or forums with messages like this “wxDev-
C++ crashes, please fix it” or “wxDev-C++ has just crashed what is wrong with
it?”. The developers are only human (yes it is true!) they can not guess from
messages like that what has gone wrong.

The correct procedure is to file a bug report. When the IDE crashes it will
generally produce the following dialog.

Figure x.x – wxDev-C++ error dialog

The section of most interest to us is circled in red.

The following steps will vary depending on whether you choose to save the bug
report first or just mail it. Steps 1 – 2 are the same for both. Step 3 is only if you
have chosen to save a bug report.

So choose either

Save bug report
Or Mail bug report

Then follow the next steps

Step 1 In the dialog enter your contact information. This allows the developers to

contact you if they need further information or to inform you about
possible solution and fixes.

Click [Continue].

Figure x.x - Step 1, Entering your contact information

Step 2 Although you can skip this step it is not very helpful. So enter everything
you did leading up to the crash. Enter as much detail as possible here as
this will allow the developers to try to reconstruct the steps that lead to this
situation.

Click [Continue]

Figure x.x - Step 2, Reporting the steps leading to the crash

Step 3 If you chose to save the bug report then the next dialog you will see is a
save dialog. Save the bug report under any name you wish.

Figure x.x – Step 3, Saving a bug report.

Click [Save]

You will be returned to the crash dialog.

Click [Mail bug report]

Steps 1 and 2 will already be filled, this will be evident by the continue
button being coloured dark green.

Continue on to the final stage.

Step 4 The final stage is to send a screenshot of your desktop and the state of

wxDev-C++, this is generated automatically by the report generator. This
can give the developers useful information about the state of your system
and the IDE.

Figure x.x – Screenshot of your desktop and wxDev-C++ running.

Now the report generator will contact your default email client to create an
email to the developers.

Step 5 Add any extra information in this email, but nothing rude, remember they
are working hard to develop this and provide it free of charge. Finally
send the email.

Figure x.x – Email carrying the completed bug report.

Q. I started wxDev-C++ then selected File|New|New wxFrame. Three files

Frm1h, Frm1.cpp and Frm1.wxform were created, but when I pressed
compile nothing happens. If I press Ctrl+11 a dialog that says ‘Rebuilding…’
appears and nothing happens. What is wrong?

A. Nothing is wrong. The New wxFrame options just adds a new frame to your

project. If you haven’t begun a wxWidgets project then there is nothing for the
compiler to compile therefore it wont do anything.

Q. I try to compile my project but get lots of errors like the following:

My ProjectFrm.h:33: error: expected unqualified-id before numeric constant
My ProjectFrm.h:33: error: expected `,' or `;' before numeric constant

What is the problem?

A. The most usual cause of this is that when you created a new project you included

spaces in the project name. If unnoticed this can result in the generated class
names containing spaces which is not legal in C++. Spaces in the project’s
filenames can also create problems since the make program which is used to call
the compiler can interpret the space as the end of the filename. (The problem with
spaces in the filenames is reported to be fixed).

Q. I disabled code completion, but the visual designer keeps complaining, why

does the designer need code completion enabled?

A. When you use the designer to add event function to your project, the designer

needs to determine the best place to insert this function and check that a function
with the same name does not already exist. If you don’t intend to add events you
don’t need code completion enabled.

Q. I have installed a new version of wxDev-C++ or a new version of the

wxWidgets library. Now when I try to compile a previously working project I
get this error “cannot find –lwxmsw25”. What is wrong?

A. The problem that is being reported is that the linker cannot find one of the library

files. In this case it is the base wxWidgets file. This problem generally arises due
to the naming convention of the wxWidgets libraries. These are named ‘l’ for
library ‘wx’ for wxWidgets, then the platform ‘msw’, finally the library version
number in this case 2.5.x. It is the last part that causes problems. Your project has
been linked to the 2.5.x library but if you have updated you may now be using
2.6.x or 2.7.x and so on. So how to fix the problem?

Open the Project Options dialog via Project|Project Options. Then select the tab
labelled parameters. In the text control under the label Linker look for any options
that contain a 25 and alter this to 26 or whatever version of library you are using.

Figure x.x – The Project Options dialog showing wxWidgets 2.6.x library files

Q. I try to compile my wxWidgets project but I keep getting the error
“[Resource error] can’t open cursor file ‘wx/msw/hand.cur’: No such file or
directory. What am I doing wrong?

A. Firstly don’t worry this is an ongoing problem that raises its head every now and

then. This should be fixed in the latest versions of wxDev-C++ but if you do run
into this problem here is how to fix it. Open the Project Options dialog via
Project|Project Options. Go to the Directories tab and under Resource Directories
add the include path to your copy of wxDev-C++ this will be either ‘C:\Dev-
Cpp\include’ if you installed to the default directory or whatever path you chose
to install to plus ‘\include’.

Figure x.x – Project Options dialog showing the resource include path.

Q. I tried to compile my project but I get the error

In file included from MyProject_private.rc
wx/msw/wx.rc: No such file or directory.

A. This problem is related to the proceeding problem and the answer is the same.

Q. wxDev-C++ adds wxT() around my strings, however I want my strings to be

translatable. How do I get wxDev-C++ to add _() around my strings.

A. In wxDev-C++ 6.9 onwards right click on the designer form. From the following

menu choose “View Designer Options”.

From the following dialog choose the tab “Code Generation Options”, From the
drop down box labelled “String Internationalization” Choose the option _().

Q. Where can I go for more help?

A. The best place to ask for wxDev-C++ related help is on the wxForum. There are

special sub conferences devoted to using wxDev-C++, writing C++ programs,
using wxWidgets addons and much more.

Another resource for wxWidgets related problems is the wxWiki . More resources
can be located in the Resources Section.

Part 3 – Advanced Development with wxWidgets and
wxDevC++

Chapter 13 - Creating and using other controls

The Simple Way

The Complex Way

Chapter 14 – Working with other frameworks

OpenGL

SDL

Part 4 – Going Beyond the Boundaries of this Book

Alternatives
wxFormDesigner
Code::Blocks
DialogBlocks

Resources

C Programming

Thinking in C - http://mindview.net/CDs/ThinkingInC/beta3

C++ Programming

Thinking in C++ Volume 1+2 by Bruce Eckel - http://mindview.net/Books

http://www.freeprogrammingresources.com/cppbooks.html

C++ Beginners tutorial: http://www.cplusplus.com/doc/tutorial/

wxWidgets Programming

wxForum - http://wxforum.shadonet.com/index.php

C++ Programming -
http://wxforum.shadonet.com/viewforum.php?f=1&sid=f3c4ab06a21
f8248456041044680ff5c
wxDev-C++ -
http://wxforum.shadonet.com/viewforum.php?f=28&sid=f3c4ab06a2
1f8248456041044680ff5c
wxCode -
http://wxforum.shadonet.com/viewforum.php?f=30&sid=f3c4ab06a2
1f8248456041044680ff5c

wxWiki - http://www.wxwidgets.org/wiki/index.php/Main_Page

Program Design

wyoGuide - http://wyoguide.sourceforge.net/guidelines/content.html

Appendix

Appendix A - Keyboard Shortcuts

Key(s) Shortcut description
Left Arrow Left one character
Right Arrow Right one character
Up Arrow Up one line
Down Arrow Down one line
Control + Left Left one word
Control + Right Right one word
Home Start of line
End End of line
Page Up Up one page
Page Down Down one page

Appendix B – C/C++ Keywords

Keyword C89 C99 C++ Meaning
_Bool �
_Complex �
_Imaginary �
asm �
auto � � �
bool �
break � � �
case � � �
catch �
char � � �
class �
const � � �
const_cast �
continue � � �
default � � �
delete �
do � � �
double � � �
dynamic_cast �
else � � �
enum � � �
explicit �
export �
extern � � �
false �
float � � �
for � � �
friend �
goto � � �
if � � �
inline � �
int � � �
long � � �
mutable �
namespace �

new �
operator �
private �
protected �
public �
register � � �
reinterpret_cast �
restricted �
return � � �
short � � �
signed � � �
sizeof � � �
static � � �
static_cast �
struct � � �
switch � � �
template �
this �
throw �
true �
try �
typedef � � �
typeid �
union � � �
unsigned � � �
using �
virtual �
void � � �
volatile � � �
wchar_t �
while � � �

